K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

              (a+b+c)>_0  Va,b,c

\(\Leftrightarrow\) a2+b2+c2+2ab+2ac+2bc>_0

\(\Leftrightarrow\) a2+b2+c2>_2ab+2ac+2bc

\(\Leftrightarrow\)a2+b2+c2>_2(ab+ac+bc)

8 tháng 8 2016

1) A= 2a2b2+2a2c2+2b2c2-a^4-b^4-c^4

       = 2a2b2+2a2c2+2b2c2-(a^4+b^4+c^4)

       =  2a2b2+2a2c2+2b2c-[(a2+b2+c2)2+2a2b2+2a2c2+2b2c)

       = 2a2b2+2a2c2+2b2c2 -(a2+b2+c2)2-2a2b2-2a2c2-2b2c2

         = (a2+b2+c2)>0

8 tháng 8 2016

\(A=5n^3+15n^2+10n\)

\(=5n\left(n^2+2\times n\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right)\)

\(=5n\left[\left(n+\frac{3}{2}\right)^2-\frac{1}{4}\right]\)

\(=5n\left[\left(n+\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2\right]\)

\(=5n\left(n+\frac{3}{2}+\frac{1}{2}\right)\left(n+\frac{3}{2}-\frac{1}{2}\right)\)

\(=5n\left(n+2\right)\left(n+1\right)\)

Tích của 3 số nguyên liên tiếp chia hết cho 6

=> A vừa chia hết cho 6 vừa chia hết cho 5

=> A chia hết cho 30 (đpcm)

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
26 tháng 3 2020

Rất khủng khiếp (tại cái chương trình của em nó xấu:v) nhưng nó là một cách chứng minh:

\(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\frac{27\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2\ge\frac{27\left(x^2+y^2+z^2\right)}{\left(x+y+z\right)^2}\)

Sau khi quy đồng, ta cần chứng minh biểu thức sau đây không âm:

zgta9hq.png

Hiển nhiên đúng vì \(x=min\left\{x,y,z\right\}\)

26 tháng 2 2018

Câu hỏi của trần trúc quỳnh - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

5 tháng 11 2019

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

5 tháng 11 2019

Còn bài 1

17 tháng 3 2017

a2+b2>=2ab

b2+c2>=2bc

c2+a2>=-2ac

Cộng 2 vế với nhau:

a2+b2+c2>= ab+bb-ca