Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\)
\(\Leftrightarrow\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)< \frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\right)\)
\(\Leftrightarrow\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)< \frac{1}{3}+\frac{1}{10}+\frac{1}{15}\)
\(\frac{1}{3}+\left(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}\right)+\left(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}\right)< \frac{1}{2}\)
Vậy \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\left(đpcm\right)\)
1/2 lớn hơn
vì phân số 1/2 có mẫu số nhỏ hơn các phân số kia nên phân số 1/2 sẽ lớn hơn các phân số kia
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}<\frac{1}{2}\)
Ta có: Gọi dãy số cần chứng minh là A
\(A<\frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+\frac{1}{60}\right)\)
\(A<\frac{1}{3}+\frac{3}{30}+\frac{4}{60}\)
\(A<\frac{10}{30}+\frac{3}{30}+\frac{2}{30}\)
\(A<\frac{15}{30}=\frac{1}{2}\)
Vậy \(A<\frac{1}{2}\)
k nha
\(\frac{1}{3}+\frac{1}{31}+\frac{1}{36}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}<\frac{1}{3}+\frac{1}{31}+\frac{1}{31}+\frac{1}{31}+\frac{1}{47}+\frac{1}{47}+\frac{1}{47}=\frac{1}{3}+\frac{3}{31}+\frac{3}{47}=\frac{2159}{4371}<\frac{1}{2}\)
Ta có : \(\frac{1}{3}+\frac{1}{31}+\frac{1}{36}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{3}+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\right)+\)\(\left(\frac{1}{45}+\frac{1}{45}+\frac{1}{45}\right)\)
\(=\frac{1}{3}+\frac{3}{30}+\frac{3}{45}=\frac{1}{2}\)
\(\Rightarrow\)\(\frac{1}{3}+\frac{1}{31}+\frac{1}{36}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\)
\(\RightarrowĐPCM\)
a) gọi \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
gọi \(B=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(\Rightarrow A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\)
b) Ta thấy \(\frac{1}{37}< \frac{1}{35}< \frac{1}{31}< \frac{1}{30}\), \(\frac{1}{61}< \frac{1}{53}< \frac{1}{47}< \frac{1}{45}\)
Do đó : \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{53}+\frac{1}{61}< \frac{1}{3}+\frac{1}{30}.3+\frac{1}{45}.3=\frac{1}{2}\)
c) \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{2500}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{2500}\right)\)
\(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)
Ta thấy vế trong ngoặc nhỏ hơn 1
\(\Rightarrow49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>48\)
ko chứng minh đấy làm gì dc nhau ko
không thèm chứng minh
mình khinh bài này