Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=\frac{3}{2}\cdot x^4-\frac{1}{16}\cdot x^4+\frac{1}{32}\cdot x^4-\frac{1}{4}\cdot x^4\)
\(=x^4\left(\frac{3}{2}-\frac{1}{16}+\frac{1}{32}-\frac{1}{4}\right)\)
\(=\frac{32}{39}\cdot x^4\)
Vì \(x\ne0\Rightarrow x^4>0\)
=> \(\frac{32}{39}x^4>0\forall x\ne0\)
1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)
Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)
Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)
\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)
1. \(A=x^{15}+3x^{14}+5\)
\(A=x^{14}\left(x+3\right)+5\)
\(A=x^{14}+5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=1^{2007}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15\)
\(C=3x\left(7x^2+4x^2-x+8+5\right)\)
\(C=3x\left(0+5\right)\)
\(C=15x\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)
\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
\(D=4x.0+2007\)
\(D=2007\)
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
2. -x2 + x - 33 = -x2 + x - 1/4 - 131/4 = -( x2 - x + 1/4 ) - 131/4 = -( x - 1/2 )2 - 131/4
-( x - 1/2 )2 ≤ 0 ∀ x => -( x - 1/2 )2 - 131/4 ≤ -131/4 < 0 ∀ x ( đpcm )
3. x2 + 4x + 33 = x2 + 4x + 4 + 29 = ( x + 2 )2 + 29
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 29 ≥ 29 > 0 ∀ x ( đpcm )
4. x2 + 8x = x2 + 8x + 16 - 16 = ( x + 4 )2 - 16
( x + 4 )2 ≥ 0 ∀ x => ( x + 4 )2 - 16 ≥ -16 ∀ x
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
Vậy GTNN của biểu thức = -16, đạt được khi x = -4
\(F=\frac{3}{2}x^4-\frac{1}{16}x^4+\frac{1}{32}x^4-\frac{1}{4}x^4\)
\(F=\left(\frac{3}{2}-\frac{1}{16}+\frac{1}{32}-\frac{1}{4}\right)x^4\)
\(F=\frac{39}{32}x^4\)
Ta có : x4 có số mũ là 4 => x4 luôn dương với mọi x ( x khác 0 )
\(\frac{39}{32}>1\Rightarrow\frac{39}{32}>0\)
=> \(\frac{39}{32}x^4\)luôn dương với mọi x ( x khác 0 )
=> \(\frac{39}{32}x^4>0\)với mọi x ( x khác 0 )
=> \(F=\frac{3}{2}x^4-\frac{1}{16}x^4+\frac{1}{32}x^4-\frac{1}{4}x^4>0\forall x\left(x\ne0\right)\)