K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n\left(9+1\right)-2^{n-1}.2.\left(4+1\right)\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\) (đpcm)

25 tháng 2 2017

Đặt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n] 
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10) 
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 
Suy ra S chia hết cho 10.

22 tháng 11 2015

\(3^{n+2}-2 ^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(2^n-2^{n-1}\right).10\)   chia hết cho 10

8 tháng 5 2016

Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n] 

Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10) 

Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 

Suy ra S chia hết cho 10.

8 tháng 5 2016

\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-2^{n+2}-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(3^n-2^{n-1}\right).10\)

luôn chia hết cho 10  (đpcm)

1 tháng 5 2018

ta có : Số n và số có tổng các chữ số bằng n có cùng số dư trong phép chia cho 9,do đó 11...11 -n chia hết cho 9(11..11 là số có n chữ số 1)

10 mủ n +18.n-1=10 mủ n -1 -9.n +27.n=99...9 -9.n +27 .n(99...9 là số có n chữ số 9)=9.(11...1-n)+27.n chia hết cho 27 (11..11 là số có n chữ số 1) 

Vậy ...

T I C K cho mình nha

1 tháng 5 2018

toán lớp 7 à sao mà khó vậy

14 tháng 2 2016

moi hok lop 6 thoi

14 tháng 2 2016

Với n = 1, ta có 
1^3 + 9.1^2 + 2.1 = 12 chia hết cho 6 
Giả sử khẳng định đúng với n = k, tức là: 
k^3 + 9k^2 + 2k chia hết 6 
Đặt k^3 + 9k^2 + 2k = 6Q 
Ta sẽ CM khẳng định đúng với n = k + 1, ta có: 
(k + 1)^3 + 9(k + 1)^2 + 2(k + 1) 
= k^3 + 3k^2 + 3k + 1 + 9k^2 + 18k + 9 + 2k + 1 
= (k^3 + 9k^2 + 2k) + 3k^2 + 18k + 3k + 12 
= 6Q + (3k^2 + 21k) + 12 
= 6Q + 3k(k + 7) + 12 
= 6Q + 3k[(k + 1) + 6] + 12 
= 6Q + 3k(k + 1) + 6.3k + 12 
Vì k và k + 1 là 2 số nguyên liên tiếp nên: 
k(k + 1) chia hết cho 2 
=> 3k(k + 1) chia hết cho 3.2 = 6 
=> 6Q + 3k(k + 1) + 6.3k + 12 chia hết cho 6 
Vậy theo nguyên lý quy nạp ta chứng minh được 
n^3 + 9n^2 + 2n chia hết 3

15 tháng 4 2018

3n+2 -22n+2+3n-2n 

=(3n+2+3n)+(-2n+2 -2n)

=3n.(32+1)-2n.(22+1)

=3n.10-2n.5

=3n.10-2n-1.10

=10.(3n -2n-1) chia hết cho 10

Vậy 3n+2 -2n+2+3n-2n chia hết cho 10

22 tháng 11 2018

Ta có:

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(\left\{{}\begin{matrix}3^n.10⋮10\\2^n.5⋮10\end{matrix}\right.\)

Nên \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10

19 tháng 9 2016

Cho gửi nhờ đề

24 tháng 2 2016

3^n+2-2^n+2+3^n-2^n

=3^n+2+3^n-(2^n+2+2^n)

=3^n(3^2+1)-2^n(2^2+1)

=3^n.10-2^n.5=3^n.10-2^n-1.10=10(3^n-2^n-1) chia hết cho 10(đpcm)

3n+3+3n+1+2n+3+2n+2=3n+1(9+1)+2n+2(2+1)

=2.3.5.3n+3.2.2n+1=6.5.3n+6.2n+1

=6(5.3n+2n+1) chia hết cho 6

=>đpcm