Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với n=1 thì \(7^{^{ }3}+8^3\) chia hết cho \(7^2-56+8^2nên\) chia hết cho 19
Giả sử \(7^{k+2}+8^{k+2}\) chia hết cho 19 (k >_ 1)
Xét \(7^{k=3}+8^{2k+3}=7.7^{k+2}+64.8^{2k+1}=7.\left(7^{k+2}+8^{2k+1}\right)+57.8^{2k+1}\) chia hết cho 19
d) ( n + 7 )2 - ( n - 5 )2
= n2 + 14n + 49 - n2 + 10n - 25
= 24n + 24
= 24 ( n + 1 ) chia hết cho 24 ( đpcm )
e)
( 7n + 5 )2 - 25
= ( 7n + 5 )2 - 52
= ( 7n + 5 - 5 ) ( 7n + 5 + 5 )
= 7n ( 7n + 10 ) chia hết cho 7 ( đpcm )
\(\text{ Ta có : }\left(n+2\right)^2-\left(n+2\right)^2=0⋮8\left(đpcm\right)\)
Vậy...............
Sai đề rồi :))
\(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)
\(\text{Ta có : }\left(n+2\right)^2-\left(n-2\right)^2\\ \\ =\left(n+2+n-2\right)\left(n+2-n+2\right)\\ \\ =2n\cdot4\\ \\ =8n⋮8\left(đpcm\right)\)
Vậy \(\left(n+2\right)^2-\left(n-2\right)^2⋮8\)
a, (n+3)2-(n-1)2
= n2+6n+9-n2+2n-1
= 8n + 8
= 8(n+1) chia hết cho 8
Ta có:
\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)=n\left(2n^2+2n+n+1\right)=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(2n-2+3\right)=n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)
Ta thấy:
\(n-1;n;n+1\) là 3 số nguyên liên tiếp (\(n\in Z\)) => tích của chúng chia hết cho 2 và 3. \(\Rightarrow2\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
Và \(3n\left(n+1\right)⋮6\Rightarrow2n^3+3n^2+n⋮6\)
Tiếp câu b nha
\(A=\frac{n^5}{120}+\frac{n^4}{10}+\frac{7n^3}{24}+\frac{5n^2}{12}+\frac{n}{5}\)
\(=\frac{n^5+10n^4+35n^3+50n^2+24n}{120}\)
Ta có:\(n^5+10n^4+35n^3+50n^2+24n\)
\(=n\left(n^4+10x^3+35x^2+50x+24\right)\)
\(=n\left(n^4+2n^3+8n^3+16n^2+19n^2+38n+12n+4\right)\)
\(=n\left(n+3\right)\left(n^3+3n^2+5n^2+15n+4n+12\right)\)
\(=n\left(n+2\right)\left(n+3\right)\left(n+4n+n+4\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮3;5;8\)
Mà \(ƯC\left(3;5;8\right)=1\)
\(\Rightarrow n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)
Vậy A chia hết cho 120
1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)
2: \(A=n^3+11n\)
\(=n^3-n+12n\)
\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)
3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)
a) (n + 2)2 - (n - 2)2
= (n + 2 - n + 2)(n + 2 + n - 2)
\(=8n⋮8(\forall n\in Z)\)
b) (n + 7)2 - (n - 5)2
= (n + 7 - n + 5)(n + 7 + n - 5)
= 12.(2n + 2)
= \(24\left(n+1\right)⋮24\left(\forall n\in Z\right)\)