Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(n^4+2n^3-n^2-2n\)
\(=n^3\left(n+2\right)-n\left(n+2\right)\)
\(=\left(n+2\right)\left(n^3-n\right)\)
\(=n\left(n^2-1\right)\left(n+2\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Do : \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 4 số nguyên liên tiếp nên chia hết cho 24 .
Vậy \(n^4+2n^3-n^2-2n\) chia hết cho 24 ( đpcm )
Ta có:
\(n^4+2n^3-n^2-2n\)
\(=n^3\left(n+2\right)-n\left(n+2\right)\)
\(=\left(n+2\right)\left(n^3-n\right)\)
\(=\left(n+2\right)n\left(n^2-1\right)\)
\(=\left(n+2\right)n\left(n+1\right)\left(n-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Vì \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\)
\(\Rightarrow n^4+2n^3-n^2-2n⋮24\)
Có: \(n^4+2n^3-n^2-2n=n^2\left(n^2+2n\right)-\left(n^2+2n\right)\)
\(=\left(n^2-1\right)\left(n^2+2n\right)=\left(n^2-1^2\right)n\left(n+2\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n+2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Mà \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là 4 số nguyên liên tiếp
\(\Rightarrow\)trong đó có một số chia hết cho 2, có ít nhất một số chia hết cho 3, có ít nhất một số chia hết cho 4
\(\Rightarrow\)\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)chia hết cho \(2\times3\times4\)
\(\Rightarrow\)\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)chia hết cho 24
vậy, \(n^4+2n^3-n^2-2n\)chia hết cho 24
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
Phân tích đa thức thành nhân tử :
\(x^4+2n^3-n^2-2n\)
\(=n^3\left(x+2\right)-n\left(n+2\right)\)
\(=\left(n^3-n\right)\left(n+2\right)\)
\(=n\left(n^2-1\right)\left(n+2\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\)
vì-là-tích-của-4-số-liên-tiếp
CHÚC-BẠN-HỌC-TỐT.....
Lời giải:
Đặt \(A=n^4+2n^3-n^2-2n\)
\(\Leftrightarrow A=(n+2)(n^3-n)=n(n+2)(n^2-1)\)
Ta cm \(A\vdots 3\)
+) Nếu \(n\equiv 0\pmod 3\Rightarrow A\vdots 3\)
+) Nếu \(n\equiv \pm 1\pmod 3\Rightarrow n^2\equiv 1\pmod 3\Leftrightarrow n^2-1\vdots 3\)
\(\Rightarrow A\vdots 3\)
Từ hai TH trên suy ra \(A\vdots 3(1)\)
Ta cm \(A\vdots 8\)
\(A=n(n+2)(n-1)(n+1)\)
+) Nếu \(n\equiv 0\pmod 4\Rightarrow\left\{\begin{matrix} n+2\equiv 0\pmod 2\\ n\equiv 0\pmod 4\end{matrix}\right.\Rightarrow n(n+2)\vdots 8\Rightarrow A\vdots 8\)
+) Nếu \(n\equiv 1\pmod {4}\Rightarrow \left\{\begin{matrix} n-1\equiv 0\pmod 4\\ n+1\equiv 0\pmod 2\end{matrix}\right.\Rightarrow (n-1)(n+1)\vdots 8\Rightarrow A\vdots 8\)
+) Nếu \(n\equiv 2\pmod 4\Rightarrow\left\{\begin{matrix} n\equiv 0\pmod 2\\ n+2\equiv 2+2\equiv 0\pmod 4\end{matrix}\right.\Rightarrow n(n+2)\vdots 8\Rightarrow A\vdots 8\)
+) Nếu \(n\equiv 3\pmod 4\Rightarrow\left\{\begin{matrix} n-1\equiv 0\pmod 2\\ n+1\equiv 3+1\equiv 0\pmod 4\end{matrix}\right.\Rightarrow (n-1)(n+1)\vdots 8\Rightarrow A\vdots 8\)
Từ các TH trên suy ra \(A\vdots 8(2)\)
Từ \((1),(2),\text{UCLN(8,3)=1}\Rightarrow A\vdots 24\)
Ta có: \(n^4+2n^3-n^2-2n\)
\(=\left(n^4+2n^3\right)-\left(n^2+2n\right)\)
\(=n^3\left(n+2\right)-n\left(n+2\right)\)
\(=\left(n+2\right)\left(n^3-n\right)\)
=> \(n^4+2n^3-n^2-2n⋮24\)
Ta có
x4 - 4x3 - 4x2 + 16 = (x - 4)(x - 2)x(x + 2)
Đây là tích của 4 số chẵn liên tiếp
Trong 4 số chẵn liên tiếp sẽ có 1 số chia hết cho 2, 1 số chia hết cho 4, 1 số chia hết cho 6, 1 số chia hết cho 8
Vậy số đó chia hết cho 2×4×6×8 = 384
Ta có
x4 + 2x3 - x2 - 2x = (x - 1)x(x + 1)(x + 2)
Trong bốn số liên tiếp có 2 số chẵn trong 2 số chẵn đó có 1 số chia hết cho 2 và 1 số chia hết cho 4 nên nó chia hết cho 8
Trong 4 số liên tiếp có 1 số chia hết cho 3
Mà 8 và 3 nguyên tố cùng nhau nên nó chia hết cho 24
a) ( 2n+3 )2 - 9 = (2n+3 - 3 )(2n+3+3) = 2n.(2n+6)=4n(n+3) \(⋮\)4
b) n2 (n+1) + 2n2 + 2n = n2 ( n + 1 ) + 2n ( n + 1 ) = (n + 1 ) ( n2 + 2n ) = n ( n + 1 ) ( n + 2 ) \(⋮\)6
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link trên nhé!