Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link trên nhé!
Ta có : \(n^4+2n^3-n^2-2n\)
\(=n^3\left(n+2\right)-n\left(n+2\right)\)
\(=\left(n+2\right)\left(n^3-n\right)\)
\(=n\left(n^2-1\right)\left(n+2\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Do : \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 4 số nguyên liên tiếp nên chia hết cho 24 .
Vậy \(n^4+2n^3-n^2-2n\) chia hết cho 24 ( đpcm )
Ta có:
\(n^4+2n^3-n^2-2n\)
\(=n^3\left(n+2\right)-n\left(n+2\right)\)
\(=\left(n+2\right)\left(n^3-n\right)\)
\(=\left(n+2\right)n\left(n^2-1\right)\)
\(=\left(n+2\right)n\left(n+1\right)\left(n-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Vì \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\)
\(\Rightarrow n^4+2n^3-n^2-2n⋮24\)
Ta có
x4 - 4x3 - 4x2 + 16 = (x - 4)(x - 2)x(x + 2)
Đây là tích của 4 số chẵn liên tiếp
Trong 4 số chẵn liên tiếp sẽ có 1 số chia hết cho 2, 1 số chia hết cho 4, 1 số chia hết cho 6, 1 số chia hết cho 8
Vậy số đó chia hết cho 2×4×6×8 = 384
Ta có
x4 + 2x3 - x2 - 2x = (x - 1)x(x + 1)(x + 2)
Trong bốn số liên tiếp có 2 số chẵn trong 2 số chẵn đó có 1 số chia hết cho 2 và 1 số chia hết cho 4 nên nó chia hết cho 8
Trong 4 số liên tiếp có 1 số chia hết cho 3
Mà 8 và 3 nguyên tố cùng nhau nên nó chia hết cho 24
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
\(a,n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \Rightarrow n^2\left(n+1\right)+2n\left(n+1\right)⋮6\left(đpcm\right)\)
ĐK : n∈Nn∈N. Gọi : A=n(n+1)(n+2)(n+3)A=n(n+1)(n+2)(n+3)
Với n = 1, ta có :
A=1.(1+1)(1+2)(1+3)=1.2.3.4=24⋮24A=1.(1+1)(1+2)(1+3)=1.2.3.4=24⋮24
Với n=k+1(k∈N∗)n=k+1(k∈N∗)
A=(k+1)(k+2)(k+3)(k+4)A=(k+1)(k+2)(k+3)(k+4)
Đây là tích của 4 số tự nhiên tự nhiên liên tiếp nên có thể khẳng định rằng :
- 1 số ⋮2⋮2
- 1 số ⋮3⋮3
- 1 số ⋮4⋮4
mà (2,3,4)=1(2,3,4)=1
⇒n(n+1)(n+2)(n+3)⋮2.3.4=24⇒n(n+1)(n+2)(n+3)⋮2.3.4=24
Vậy n(n+1)(n+2)(n+3)⋮24n(n+1)(n+2)(n+3)⋮24 với mọi n∈N
Bài 2.
\(n^4-2n^3-n^2+2n=n\left(n^3-2n^2-n+2\right)=n\left[n^2\left(n-2\right)-\left(n-2\right)\right]\)
\(=n\left(n-2\right)\left(n^2-1\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
là tích của \(4\)số nguyên liên tiếp nên trong đó có ít nhất \(1\)thừa số chia hết cho \(4\), \(1\)thừa số chia hết cho \(3\), \(1\)thừa số chia hết cho \(2\)nhưng không chia hết cho \(4\)
do đó \(A\)chia hết cho \(2.3.4=24\).
Ta có đpcm.
Bài 1:
\(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm\sqrt{\frac{1}{2}}+2\end{cases}}\)
Có: \(n^4+2n^3-n^2-2n=n^2\left(n^2+2n\right)-\left(n^2+2n\right)\)
\(=\left(n^2-1\right)\left(n^2+2n\right)=\left(n^2-1^2\right)n\left(n+2\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n+2\right)=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Mà \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là 4 số nguyên liên tiếp
\(\Rightarrow\)trong đó có một số chia hết cho 2, có ít nhất một số chia hết cho 3, có ít nhất một số chia hết cho 4
\(\Rightarrow\)\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)chia hết cho \(2\times3\times4\)
\(\Rightarrow\)\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)chia hết cho 24
vậy, \(n^4+2n^3-n^2-2n\)chia hết cho 24
Lời giải:
Đặt \(A=n^4+2n^3-n^2-2n\)
\(\Leftrightarrow A=(n+2)(n^3-n)=n(n+2)(n^2-1)\)
Ta cm \(A\vdots 3\)
+) Nếu \(n\equiv 0\pmod 3\Rightarrow A\vdots 3\)
+) Nếu \(n\equiv \pm 1\pmod 3\Rightarrow n^2\equiv 1\pmod 3\Leftrightarrow n^2-1\vdots 3\)
\(\Rightarrow A\vdots 3\)
Từ hai TH trên suy ra \(A\vdots 3(1)\)
Ta cm \(A\vdots 8\)
\(A=n(n+2)(n-1)(n+1)\)
+) Nếu \(n\equiv 0\pmod 4\Rightarrow\left\{\begin{matrix} n+2\equiv 0\pmod 2\\ n\equiv 0\pmod 4\end{matrix}\right.\Rightarrow n(n+2)\vdots 8\Rightarrow A\vdots 8\)
+) Nếu \(n\equiv 1\pmod {4}\Rightarrow \left\{\begin{matrix} n-1\equiv 0\pmod 4\\ n+1\equiv 0\pmod 2\end{matrix}\right.\Rightarrow (n-1)(n+1)\vdots 8\Rightarrow A\vdots 8\)
+) Nếu \(n\equiv 2\pmod 4\Rightarrow\left\{\begin{matrix} n\equiv 0\pmod 2\\ n+2\equiv 2+2\equiv 0\pmod 4\end{matrix}\right.\Rightarrow n(n+2)\vdots 8\Rightarrow A\vdots 8\)
+) Nếu \(n\equiv 3\pmod 4\Rightarrow\left\{\begin{matrix} n-1\equiv 0\pmod 2\\ n+1\equiv 3+1\equiv 0\pmod 4\end{matrix}\right.\Rightarrow (n-1)(n+1)\vdots 8\Rightarrow A\vdots 8\)
Từ các TH trên suy ra \(A\vdots 8(2)\)
Từ \((1),(2),\text{UCLN(8,3)=1}\Rightarrow A\vdots 24\)
Ta có: \(n^4+2n^3-n^2-2n\)
\(=\left(n^4+2n^3\right)-\left(n^2+2n\right)\)
\(=n^3\left(n+2\right)-n\left(n+2\right)\)
\(=\left(n+2\right)\left(n^3-n\right)\)
=> \(n^4+2n^3-n^2-2n⋮24\)