K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

rút gọn đi

14 tháng 7 2017

Ta có:

\(2006A=\dfrac{2006^{2007}+2016}{2006^{2007}+1}=1+\dfrac{2005}{2006^{2007}+1}\)

\(2006B=\dfrac{2006^{2006}+2006}{2006^{2006}+1}=1+\dfrac{2005}{2006^{2006}+1}\)

Do \(\dfrac{2005}{2006^{2006}+1}>\dfrac{2005}{2006^{2007}+1}\Rightarrow1+\dfrac{2005}{2006^{2006}+1}>1+\dfrac{2005}{2006^{2007}+1}\)

\(\Rightarrow2006A< 2006B\Rightarrow A< B\)

14 tháng 7 2017

Mình sẽ giải cách ngắn hơn cách bạn đạt nha:

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(A=\dfrac{2006^{2006}+1}{2006^{2007}+1}< 1\)

\(A< \dfrac{2006^{2006}+1+2005}{2006^{2007}+1+2005}\Rightarrow A< \dfrac{2006^{2006}+2006}{2006^{2007}+2006}\Rightarrow A< \dfrac{2006\left(2006^{2005}+1\right)}{2006\left(2006^{2006}+1\right)}\Rightarrow A< \dfrac{2006^{2005}+1}{2006^{2006}+1}=B\)\(A< B\)

\(C=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}\right)}{\left(1+\dfrac{2005}{2}\right)+\left(1+\dfrac{2004}{3}\right)+...+\left(1+\dfrac{1}{2006}\right)+1}\)

\(=\dfrac{2006\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}\right)}{\dfrac{2007}{2}+\dfrac{2007}{3}+...+\dfrac{2007}{2007}}=\dfrac{2006}{2007}\)

14 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)

\(A=\dfrac{2005^{2005}+1}{2005^{2006}+1}< 1\)

\(A< \dfrac{2005^{2005}+1+2004}{2005^{2006}+1+2004}\Rightarrow A< \dfrac{2005^{2005}+2005}{2005^{2006}+2005}\Rightarrow A< \dfrac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}\Rightarrow A< \dfrac{2005^{2004}+1}{2005^{2005}+1}=B\)

\(A< B\)

14 tháng 7 2017

Ta có : A = \(\dfrac{2005^{2005}+1}{2005^{2006}+1}\)

\(2005\)A = \(\dfrac{\left(2005^{2005}+1\right).2005}{2005^{2006}+1}\)

\(2005\)\(A\)= \(\dfrac{2005^{2006}+2005}{2005^{2006}+1}\)

\(2005\)\(A\)= \(\dfrac{2005^{2006}+1+2004}{2005^{2006}+1}\)

\(2005A=\dfrac{2005^{2006}+1}{2005^{2006}+1}+\dfrac{2004}{2005^{2006}+1}\)

\(2005A=1+\dfrac{2004}{2005^{2006}+1}\)

Tương tự như vậy với \(B\) ta đc

\(2005B=1+\dfrac{2004}{2005^{2005}+1}\)

\(2005^{2006}+1>2005^{2005}+1\)

\(=>\) \(1+\dfrac{2004}{2005^{2006}+1}\)\(< \)\(1+\dfrac{2004}{2005^{2005}+1}\)

\(=>\)\(2005A< 2005B\)

\(=>\)\(A< B\)

Vậy \(A< B\)

15 tháng 5 2017

Ta có:

\(2005A=\dfrac{2005^{2006}+2005}{2005^{2006}+1}=1+\dfrac{2004}{2005^{2006}+1}\)

\(2005B=\dfrac{2005^{2005}+2005}{2005^{2005}+1}=1+\dfrac{2004}{2005^{2005}+1}\)

\(\dfrac{2004}{2005^{2006}+1}< \dfrac{2004}{2005^{2005}+1}\Rightarrow1+\dfrac{2004}{2005^{2006}+1}< 1+\dfrac{2004}{2005^{2005}+1}\)

\(\Rightarrow2005A< 2005B\Rightarrow A< B\)

Vậy A < B

9 tháng 5 2017

Lời giải:

Ta có:

\(N=\dfrac{-7}{10^{2005}}+\dfrac{-15}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-7}{10^{2006}}+\dfrac{-8}{10^{2006}}\)

\(M=\dfrac{-15}{10^{2005}}+\dfrac{-7}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-8}{10^{2005}}+\dfrac{-7}{10^{2006}}\)

Xét \(N\)\(M\)\(\dfrac{-7}{10^{2005}}+\dfrac{-7}{10^{2006}}\) chung.

\(\dfrac{-8}{10^{2005}}>\dfrac{-8}{10^{2006}}\) nên \(N>M\).

9 tháng 5 2017

cảm ơn bạnhaha

14 tháng 2 2018

Áp dụng Bất đẳng thức :

\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)

Ta có :

\(\dfrac{2006^{2006}+1}{2006^{2007}+1}< \dfrac{2006^{2006}+1+2005}{2006^{2007}+1+2005}=\dfrac{2006^{2006}+2006}{2006^{2007}+2006}=\dfrac{2006\left(2006^{2005}+1\right)}{2006\left(2006^{2006}+1\right)}=\dfrac{2006^{2005}+1}{2006^{2006}+1}\)

\(\Leftrightarrow\dfrac{2006^{2006}+1}{2006^{2007}+1}< \dfrac{2006^{2005}+1}{2006^{2006}+1}\)

21 tháng 3 2018

Chắc bạn giỏi môn Toán lắm ha

13 tháng 3 2017

mày lấy vì 2006^2005 +và -1 >3

xét 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 

vì 2006 không chia hết cho 3, 3 là số nguyên tố 

2006^2005 không chia hết cho 3

2006^2005-1 hoặc 2006^2005+1 chia hết co 3 

tự tiếp k nha

13 tháng 3 2017

chưa làm được