K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Ai trả lời giúp mik nha

11 tháng 5 2018

Đặt   \(A=\frac{1}{3}-\frac{2}{3^2}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3A=1-\frac{2}{3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(4A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt    \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3B=3+1+...+\frac{3}{3^{98}}\)

\(2B=3-\frac{1}{3^{99}}\)

\(B=\frac{3}{2}-\frac{1}{3^{99}.2}\)

Thay B vào 4A ta có:

\(4A=\frac{3}{2}-\frac{1}{3^{99}.2}\)

\(A=\frac{3}{2.4}-\frac{1}{3^{99}.2.4}\)

\(A=\frac{3}{8}-\frac{1}{3^{99}.8}\)

Vì \(\frac{3}{8}>\frac{3}{16}\)

\(\Rightarrow\frac{3}{8}-\frac{1}{3^{99}.8}< \frac{3}{16}\)

Vậy \(A< \frac{3}{16}\)

NV
10 tháng 2 2020

\(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)

\(5A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)

Trừ dưới cho trên:

\(4A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)

\(20A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}-\frac{99}{5^{99}}\)

Lại trừ dưới cho trên:

\(16A=1-\frac{100}{5^{99}}+\frac{99}{5^{100}}\)

\(\Rightarrow A=\frac{1}{16}-\frac{1}{16.5^{99}}\left(100-\frac{99}{5}\right)< \frac{1}{16}\) do \(100-\frac{99}{5}>0\)

29 tháng 6 2017

Kết quả...

17 tháng 4 2020

                                                                                                                                                                                                                  

đọc tiếp...