Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^2+xy+y^2+1\)=\(\left(x^2+2x\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)
=\(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\) \(\ge\)0
vậy....
b
\(x\left(x-1\right)+y\left(y-3\right)+10\)
\(=x^2-x+y^2-3+10\)
\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2-2\cdot\frac{3}{2}y+\frac{9}{4}\right)+\frac{15}{2}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y-\frac{3}{2}\right)^2+\frac{15}{2}\ge\frac{15}{2}\)
x( x - 1 ) + y( y - 3 ) + 10
= x2 - x + y2 - 3y + 10
= x2 - x + y2 - 3y + 1/4 + 9/4 + 15/2
= ( x2 - x + 1/4 ) + ( y2 - 3y + 9/4 ) + 15/2
= ( x - 1/2 )2 + ( y - 3/2 )2 + 15/2 ≥ 15/2 > 0 ∀ x, y ( đpcm )
Giải:
a) \(x^2+xy+y^2+1\)
\(=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
\(=\left(x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\ge1>0;\forall x\)
Vậy ...
Hắc Hường BĐT ở đây. Cj nghĩ cấp 2 chỉ học 1 số loại này thôi
1.BĐT Cauchy
\(A+B\ge2\sqrt{AB}\) (Áp dụng cho 2 số k âm)
\(A+B+C\ge3\sqrt[3]{ABC}\) (Áp dụng cho 3 số k âm )
2.BĐT Bunhiacopxki
\(\left(Ax+By\right)^2\le\left(A^2+B^2\right)\left(x^2+y^2\right)\)
3.BĐT Mincopxki
\(\sqrt{A^2+x^2}+\sqrt{B^2+y^2}\ge\sqrt{\left(A+B\right)^2+\left(x+y\right)^2}\)
4.BĐT Chebyshev
Với A>B, x>y thì
\(\left(A+B\right)\left(x+y\right)\le2\left(ax+by\right)\)
Vs 3 sô thì bên vế phải thay 2 bằng 3
5.BĐT Benuli
\(\left(1+h\right)^n\ge1+nh\)
6.BĐT Holder
Với a,b,c,x,y,z,m,n,p là sô thực dương
\(\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)
7.BĐT Sơ-vác-sơ
\(\dfrac{a_1^2}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)
8. \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
9. \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)
10. \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)
11. \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\ge4xy\)
12. \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)13. \(a^3+b^3\ge a^2b+ab^2\)
14. \(\dfrac{a^3}{b}\ge a^2+ab-b^2\)( Ít áp dụng )
15. \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
\(\left|\dfrac{x}{y}\right|+\left|\dfrac{y}{x}\right|\ge\left|\dfrac{x}{y}+\dfrac{y}{x}\right|\ge2\)
16. \(a^2+b^2+c^2\ge ab+ac+bc\)
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)
a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)
b/ \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)
a) \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
b) \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x
c) \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\) với mọi x,y
d) bạn kiểm tra lại đề câu d) nhé:
\(x^2+4y^2+z^2-2x-6y+8z+15\)
\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)
A = y2 -5y + 10 = y2 - 2*y*\(\frac{5}{2}\)+ \(\frac{25}{4}\)+ \(\frac{15}{4}\)= (y - \(\frac{5}{2}\))2 + \(\frac{15}{4}\)
vi (y - \(\frac{5}{2}\))2 >= 0
nên (y - \(\frac{5}{2}\))2 + \(\frac{15}{4}\) > 0
A=y^2-5y+10
=> y^2-2.y.\(\frac{5}{2}\)+\(\frac{25}{4}-\frac{25}{4}+10\)
=>\(\left(y-\frac{5}{2}\right)^2-\frac{25}{4}+10\)
=>\(\left(y-\frac{5}{2}\right)^2+\frac{15}{4}\)
vì \(\left(y-\frac{5}{2}\right)^2\)>0 \(\forall\)y
=>\(\left(y-\frac{5}{2}\right)^2+\frac{15}{4}\)\(\ge\)\(\frac{15}{4}\)