Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b+c)2=(a+b+c)(a+b+c)
=a(a+b+c)+b(a+b+c)+c(a+b+c)
=aa+ab+ac+ab+bb+bc+ac+bc+cc
=aa+bb+cc+ab+ab+ac+ac+bc+bc
=a2+b2+c2+2ab+2ac+2bc
a,(a-b)2=(a-b).(a-b)
=a2-ba-ab+b2
=a2-2ab+b2
b,(a+b)2=(a+b).(a+b)
=a2+ba+ab+b2
=a2+2ab+b2
c,(a-b).(a+b)
=a2-ba+ab-b2
=a2-b2
a, Ta có : VT = - a . ( b - c ) + ab - bc
= - ab + ac + ab - bc
= ac - bc
= c . ( a - b ) = VP
=> - a . ( b - c ) + ab - bc = c . ( a - b )
b) \(\left(a-b\right)\left(a-b\right)\)
\(=a\left(a+b\right)-b\left(a-b\right)\)
\(=a^2-ab-ba+b^2\)
\(=a^2-2ab+b^2\)
a) \(\left(a+b\right)\left(a+b\right)\)
\(=a\left(a+b\right)+b\left(a+b\right)\)
\(=a^2+ab+ba+b^2\)
\(=a^2+2ab+b^2\)
\(\left(a+b-c\right)-\left(a-b+c\right)+2c=2b\)
phân tích vế trái ta có
\(=a+b-c-a+b-c+2c\)
\(=\left(a-a\right)+\left(b+b\right)-\left(c+c\right)+2c\)
\(=2b-2c+2c\)
\(=2b\)( điều phải chứng minh)
\(\left(a-b\right).\left(a-b\right)=a^2-2ab+b^2\)
phân tích vế trái ta có
\(=\left(a-b\right)^2\)
\(=a^2-2ab+b^2\)( sử dụng hằng đẳng thức bình phươgn của 1 hiệu ) ( đpcm)
k nha ^_^
Sao cái thứ 2 lại
( a - b ) ^2 = a^2 - 2ab + b^2 thế
a^2 - 2ab thì = 0 đúng ko
Nhưng còn b^2 thì sao banj giải thích cho mk đc ko đc thì mk k cho
(a+b)(a^2-ab+b^2)=nhân đa thức với đa thức chắc bạn đã biết
a^3+b^3=a^3+a^2b-a^2b+ab^2-ab^2+b^3 chắc bạn biết thêm, bớt
=a^2(a+b)-ab(a+b)+b^2(a+b)
=(a+b)(a^2-ab+b^2)