Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\left(a-b\right)\left(a-b\right)\)
\(=a\left(a+b\right)-b\left(a-b\right)\)
\(=a^2-ab-ba+b^2\)
\(=a^2-2ab+b^2\)
a) \(\left(a+b\right)\left(a+b\right)\)
\(=a\left(a+b\right)+b\left(a+b\right)\)
\(=a^2+ab+ba+b^2\)
\(=a^2+2ab+b^2\)
a) (a + b)2 = (a + b).(a + b) = a2 + ab + ba + b2 = a2 + 2ab + b2
b) (a - b)2 = (a - b).(a - b) = a2 - ab - ba + b2 = a2 - 2ab + b2
c) (a - b).(a + b) = a2+ ab - ba - b2 = a2 - b2
a) \(\left(a+b\right)^2=\left(a+b\right).\left(a+b\right)=a\left(a+b\right)+b\left(a+b\right)=a^2+ab+ab+b^2=a^2+2ab+b^2\)
b) \(\left(a-b\right)^2=\left(a-b\right).\left(a-b\right)=a.\left(a-b\right)-b.\left(a-b\right)=a^2-ab-ab+b^2=a^2-2ab+b^2\)
Chúc bạn học tốt
a) ( a + b )2 = (a+b).(a+b)
= a(a+b) + b(a+b)
= a.a + a.b + b.a + b.b
= a2 + a.b + b.a + b2
= a2 + 2ab + b2
b) ( a - b )2 = (a-b)(a-b)
= a(a-b) - b(a-b)
= a.a - a.b - b.a + b.b
= a2 - 2ab + b2
a, Ta có : VT = - a . ( b - c ) + ab - bc
= - ab + ac + ab - bc
= ac - bc
= c . ( a - b ) = VP
=> - a . ( b - c ) + ab - bc = c . ( a - b )
(a+b+c)2=(a+b+c)(a+b+c)
=a(a+b+c)+b(a+b+c)+c(a+b+c)
=aa+ab+ac+ab+bb+bc+ac+bc+cc
=aa+bb+cc+ab+ab+ac+ac+bc+bc
=a2+b2+c2+2ab+2ac+2bc
a)a(b+1)-(b+1)=11<=>(b+1)(a-1)=11
b)2a(2b-1)+2b-1=2.7-1<=>(2b-1)(2a-1)=13
c) \(2^a+2^b=2^{a+b}\Leftrightarrow\left(2^a2^b-2^a\right)-2^b=0\Leftrightarrow2^a\left(2^b-1\right)-\left(2^b-1\right)=1\)\(\Leftrightarrow\left(2^b-1\right)\left(2^a-1\right)=1\) (*)
Con này hơi khác vì là hàm mũ
TH1: a, b thuộc N giải hệ nghiệm nguyên bình thường
(I) \(\left\{\begin{matrix}2^b-1=1\\2^a-1=1\end{matrix}\right.\)=> a=b=1; (II)\(\left\{\begin{matrix}2^b-1=-1\\2^a-1=-1\end{matrix}\right.\) vì 2a&2b>0 => (II) vô Nghiệm
TH2. a,b thuộc Z.(lớp 6 hơi khoai)
(1) a hoặc b <0 nghĩa là \(\left[\begin{matrix}a>0\\b< 0\end{matrix}\right.\)
(*)\(\Leftrightarrow\left(\frac{1-2^b}{2^b}\right)\left(2^a-1\right)=1\) có 2^a -1 luôn là số lẻ => không thể chia hết cho 2^b=> VT không nguyên => (*) vô nghiệm nguyên
(2) a và b <0 nghĩa là \(\left\{\begin{matrix}a< 0\\b< 0\end{matrix}\right.\) =>\(\left\{\begin{matrix}0< 2^a< 1\\0< 2^b< 1\end{matrix}\right.\Rightarrow\left(2^a-1\right)\left(2^b-1\right)< 1\) => vô nghiệm
Kết luận nghiệm duy nhất a=b=1
a,(a-b)2=(a-b).(a-b)
=a2-ba-ab+b2
=a2-2ab+b2
b,(a+b)2=(a+b).(a+b)
=a2+ba+ab+b2
=a2+2ab+b2
c,(a-b).(a+b)
=a2-ba+ab-b2
=a2-b2
áp dụng 7 HĐT