Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhưng trước hết làm cho nó đẹp lại cái đã:v Bài toán gì đâu mà cho toàn phân thức xấu xí, lần sau bảo người ra đề chọn hệ số đẹp hơn nha zZz Cool Kid zZz :DD
\(P=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{30\left(a^2+b^2+c^2\right)}+\left(\frac{\left(a^3+b^3+c^3\right)}{4abc}-\frac{3}{4}\right)+\frac{3}{4}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
\(=\frac{47}{60}+\frac{\left(ab+bc+ca\right)}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}\)
\(=\frac{47}{60}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\frac{4}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}\)
\(=\frac{47}{60}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{4\left(ab+bc+ca\right)}\)
\(=\frac{47}{60}+\frac{1\left(a^2+b^2+c^2\right)}{15\left(ab+bc+ca\right)}-\frac{131\left(ab+bc+ca\right)}{60\left(a^2+b^2+c^2\right)}\)
Đặt \(x=\frac{a^2+b^2+c^2}{ab+bc+ca}\Rightarrow x\ge1\). Ta cần tìm min:
\(P=f\left(x\right)=\frac{47}{60}+\frac{1}{15}x-\frac{131}{60x}\)
\(=\frac{47}{60}+\frac{1}{15}x+\frac{1}{15x}-\frac{9}{4x}\)
\(\ge\frac{47}{60}+\frac{2}{15}-\frac{9}{4}=-\frac{4}{3}\)
Đẳng thức xảy ra khi \(a=b=c\)
P/s: Tính dùng sos nhưng nghĩ lại ko nên lạm dụng nên dùng cách khác:))
minh choi poke dai chien
con bai minh chui
nho tk minh nhe
Quy đồng mẫu là ra thôi
1/a = (1xb)/(axb) = b/ab
1/b = (1xa)/(bxa) = a/ab
Ta có hai phân số trên có mẫu chung là ab, a>b nên b/ab<a/ab hay 1/a<1/b(đpcm)
# Len #
a) Áp dụng BĐT AM-GM ta có:
\(x+y\ge2\sqrt{xy}\)
\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
b) Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)