Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{x}+\sqrt{y}\right)\left(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right).\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)
\(=\frac{-y+\sqrt{x}.\sqrt{y}}{\sqrt{y}}.\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\frac{\left(\sqrt{x}.\sqrt{y}-y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}}\)
\(=\frac{xy-y^2}{y}\)
\(=\frac{y\left(x-y\right)}{y}\)
= x - y (đpcm)
1/ Sửa đề: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\) \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)
Với mọi x, y, z ta luôn có: \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\) \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\) \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)
\(\Rightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Do đó dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\) \(\Leftrightarrow\) x = y = z
3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh
\(a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\) \(a^2+b^2+2ab-4ab\ge0\) \(\Leftrightarrow\) \(a^2-2ab+b^2\ge0\) \(\Leftrightarrow\) \(\left(a-b\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi a = b
2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:
\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
\(\sqrt{\dfrac{x}{y}}-2.\sqrt{\sqrt{\dfrac{x}{y}}}.\sqrt{\sqrt{\dfrac{y}{x}}}+\sqrt{\dfrac{y}{x}}+2.\sqrt{\sqrt{\dfrac{x}{y}}.\sqrt{\dfrac{y}{x}}}\)
=\(\left(\sqrt{\sqrt{\dfrac{x}{y}}}-\sqrt{\sqrt{\dfrac{y}{x}}}\right)^2+2\)
lớn hơn hoặc bằng 2
dấu = xảy ra <=>
\(\left(\sqrt{\sqrt{\dfrac{x}{y}}}-\sqrt{\sqrt{\dfrac{y}{x}}}\right)^2+2=2\)
=>\(\sqrt{\sqrt{\dfrac{x}{y}}}=\sqrt{\sqrt{\dfrac{y}{x}}}\)
=>\(\dfrac{x}{y}=\dfrac{y}{x}\)
=>x2=y2
=>x=y
b/ \(a-\frac{1}{a}=\sqrt{a}+\frac{1}{\sqrt{a}}\)
\(\Leftrightarrow\sqrt{a}-\frac{1}{\sqrt{a}}=1\)
\(\Leftrightarrow a+\frac{1}{a}-2=1\)
\(\Leftrightarrow a+\frac{1}{a}=3\)
\(\Leftrightarrow a^2+\frac{1}{a^2}+2=9\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2=5\)
\(\Leftrightarrow a-\frac{1}{a}=\sqrt{5}\)
a/ Ta có: \(x=\frac{1-5y}{2}\) thê vô ta được
\(x^2+y^2=y^2+\left(\frac{1-5y}{2}\right)^2=\frac{29y^2-10y+1}{4}\)
\(=\frac{1}{116}\left(29^2y^2-290y+29\right)=\frac{1}{116}\left[\left(29^2y^2-2.29y.5+25\right)+4\right]\)
\(=\frac{1}{116}\left[\left(29y-5\right)^2+4\right]\ge\frac{4}{116}=\frac{1}{29}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)( Bất đẳng thức Svac-xơ )
Dấu = xảy ra khi \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\)
BĐT trên
\(< =>\frac{xy+yz+xz}{xyz}\ge\frac{9}{x+y+z}\)
\(< =>\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)
Áp dụng BĐT cô si cho 3 số :
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)
Nhân vế với vế : \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)
Nên ta có đpcm
1)đề thiếu
2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:
\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)
Đpcm
3)\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Đpcm
a) \(P=\frac{a+\sqrt{ab}}{b+\sqrt{ab}}=\frac{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{b}+\sqrt{a}\right)}=\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}\)
b)
\(\frac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{y}}\\ =\frac{\left(1+\sqrt{x}\right)+\sqrt{y}\left(1+\sqrt{x}\right)}{1+\sqrt{y}}\\ =\frac{\left(1+\sqrt{y}\right)\left(1+\sqrt{x}\right)}{1+\sqrt{y}}\\ =1+\sqrt{x}\)
a) Áp dụng BĐT AM-GM ta có:
\(x+y\ge2\sqrt{xy}\)
\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
b) Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)