K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1

\(2^{1995}=2^5\times2^{1990}=32\times2^{1990}\)

Mà \(32\div31\)dư \(1\)nên\(\left(32\times2^{1990}\right)\div31\)dư \(1\)

\(\Rightarrow\left(32\times2^{1900}-1\right)⋮31\)

hay 

\(\left(2^{1995}-1\right)⋮31\)

Bài 2

Làm tương tự

3 tháng 9 2017

cảm ơn nhiều nhé

15 tháng 3 2018

1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\)                                         \(7^2=49\equiv1\left(mod12\right)\)

             \(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\)                                     \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)

           \(\rightarrow5^{70}\equiv1\left(mod12\right)\)                                                 \(\rightarrow7^{70}\equiv1\left(mod12\right)\)

Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)

Bài 2 :  Ta có : 3012 = 13.231 + 9

Do đó: 3012 đồng dư với 9 (mod13)

=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)

=> \(3012^3\)đồng dư với 1 (mod13)

Hay \(3012^{93}\)đồng dư với 1 (mod13)

=> \(3012^{93}-1\)đồng dư với 0 (mod13)

Hay \(3012^{93}-1⋮13\left(đpcm\right)\)

           

4 tháng 11 2021

anh / chị  ơi bạn được giảng để giải bài này rồi thì anh / chị có thể giảng lại cho em dc ko cô em giao bài nó giống nhưng em ko hiểu ạ

24 tháng 12 2016

Nhóm 2 số 1 cặp

M= 1.(1+3) + 3^2.(1+3) + .... + 3^118.(1+3)

M= 1. 4 + 3^2.4+... + 3^118 . 4

M = 4.(1+3^2+...+ 3^118) chia hết cho 4

Vậy M chia hết cho 4

Nhóm 3 số 1 cặp

M= 1.(1+3+3^2) + 3^3.(1+3+3^2) + .... + 3^117.(1+3+3^2)

M= 1.13+ 3^3.13+... + 3^117 . 13

M = 13 . (1+3^3+...+3^117) chia hết cho 13

Vậy M chia hết cho 13

Nhớ k cho mình nếu bạn thấy đúng nhé!

24 tháng 12 2016

 M=1+3+32+33+...+3118+3119

=(1+3+32)+(33+34+35)+...+(3117+3118+3119)

=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)

=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)

=13+33.13+...+3117.13

=13.1+33.13+...+3117.13

=13.(1+33+3117)

=> M chia hết cho 13

Đối với 4 cũng tương tự