Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=1+3+32+33+...+3118+3119
=(1+3+32)+(33+34+35)+...+(3117+3118+3119)
=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)
=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)
=13+33.13+...+3117.13
=13.1+33.13+...+3117.13
=13.(1+33+3117)
=> M chia hết cho 13 .
Em copy của triều đặng
I = 1 + 3 + 32 + 33 + ... + 3119
=(1+3+32)+(33+34+35)+....+(3117+3118+3119)
=(1+3+32)+(1.33+3.33+32.33)+...(1.3117+3.3117+32.3117)
=13+33.(1+3+32)+...+3117.(1+3+32)
=13.1+33.13+...+3117.13
=13.(1+33+...+3117)
=> I chia hết cho 13
mấy câu kia tương tự
a, mình nghĩ là \(16^5+2^{15}\)
ta có : \(16^5=2^{20}\)
=>\(16^5+2^{15}=2^{20}+2^{15}\)
=\(2^{15}.2^5+2^{15}\)
\(=2^{15}.\left(2^5+1\right)\)
\(=2^{15}.33\)
mà \(2^{15}.33⋮33\)
\(=>16^5+2^{15}⋮33\)
\(A=1+3+3^2+3^3+...+3^{1999}+3^{2000}\)
\(A=3^0+3^1+3^2+3^3+...+3^{1999}+3^{2000}\)
Xét dãy số : 0 ; 1 ; 2 ; 3 ; ... ; 1999 ; 2000
Số số hạng của dãy số trên là :
( 2000 - 0 ) : 1 + 1 = 2001 ( số )
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{1998}+3^{1999}+3^{2000}\right)\) ( 667 cặp số )
\(A=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^{1998}.\left(1+3+3^2\right)\)
\(A=1.13+3^3.13+...+3^{1998}.13\)
\(A=\left(1+3^3+...+3^{1998}\right).13\)
=> A chia hết cho 13
Mẫu câu a)!! những câu khác ko lm đc ib!
a) Ta có:
\(A=2+2^2+2^3+2^4+...+2^{2010}.\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{2009}.3\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
Ta có:
\(A=2+2^2+2^3+2^4+...+2^{2010}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{2008}.7\)
\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)
b,\(B=3+3^2+3^3+3^4+...+3^{2010}.\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{2009}.4\)
\(=4.\left(3+3^3+...+3^{2009}\right)⋮4\)
\(B=3+3^2+3^3+3^4+...+3^{2010}\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{2008}.13\)
\(=13\left(3+3^4+...+3^{2008}\right)⋮13\)
Ta co: B= 1 + 3 +32 + 33 + ....... + 399
= (1 + 3) + 32(1+3) + 34(1 + 3) + ......... + 398(1+3)
= (1 + 3)(1 + 32 +34 + ......... + 398)
= 4(1 + 32 +34 + ........... + 398) \(⋮\)4
Vay B \(⋮\)4
k cho mk nha
B=(1+3)+(32+33)+...+(398+399)
=(1+3)+32(1+3)+...+398(1+3)
=4+32.4+.....+398.4
=4.(1+32+...+398)
vì 4 chia hết cho 4 => 4.(1+32+...+398) chia hết cho 4 => B chia hết cho 4 (điều phải chứng minh)
M=1+3+32+33+...+3118+3119
=(1+3+32)+(33+34+35)+...+(3117+3118+3119)
=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)
=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)
=13+33.13+...+3117.13
=13.1+33.13+...+3117.13
=13.(1+33+3117)
=> M chia hết cho 13
Nhóm 2 số 1 cặp
M= 1.(1+3) + 3^2.(1+3) + .... + 3^118.(1+3)
M= 1. 4 + 3^2.4+... + 3^118 . 4
M = 4.(1+3^2+...+ 3^118) chia hết cho 4
Vậy M chia hết cho 4
Nhóm 3 số 1 cặp
M= 1.(1+3+3^2) + 3^3.(1+3+3^2) + .... + 3^117.(1+3+3^2)
M= 1.13+ 3^3.13+... + 3^117 . 13
M = 13 . (1+3^3+...+3^117) chia hết cho 13
Vậy M chia hết cho 13
Nhớ k cho mình nếu bạn thấy đúng nhé!
M=1+3+32+33+...+3118+3119
=(1+3+32)+(33+34+35)+...+(3117+3118+3119)
=(1+3+32)+(33.1+33.3+33.32)+...+(3117.1+3117.3+3117.32)
=(1+3+32)+33.(1+3+32)+...+3117.(1+3+32)
=13+33.13+...+3117.13
=13.1+33.13+...+3117.13
=13.(1+33+3117)
=> M chia hết cho 13
Đối với 4 cũng tương tự