Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $d=ƯCLN(n-5, 3n-14)$
$\Rightarrow n-5\vdots d; 3n-14\vdots d$
$\Rightarrow 3n-14-3(n-5)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Do đó $\frac{n-5}{3n-14}$ là phân số tối giản.
Gọi U là UCLN của (14n+3) và (21n+4)
Để phân số (14*n+3)/(21*n+4) tối giản thì U=1.
ta có:
14n+3 chia hết cho U và 21n+4 chia hết cho U
=> 3(14n+3) chia hết cho U và 2(21n+4) chia hết cho U
=> 3(14n+3)-2(21n+4) chia hết cho U
=> 1 chia hết cho U
=> u=+-1
Vậy UCLN của (14n+3) và (21n+4) là 1,
hay phân số (14*n+3) / (21*n+4) tối giản
Gọi ƯCLN(n-5;3n-14) là d, Ta có :
n-5 =3n-15 chia hết cho d ; 3n-14 chia hết cho d
=>(n-5)-(3n-14)=1 chia hết cho d
=>d=1 hoặc -1 =>n-5 và 3n-14 là psố tối giản
k cho min nha !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
giải
gọi d ưcln {21n+4 và 14 n+3} =>
(21n+4) chia hết cho d=> [2.(21n+4)] chia hết cho d =>(42n+8)chia hết cho d(1)
(14n+3)chia hết cho d=> [3.(14n+3)] chia hết cho d => (42n+9)chia hết cho d(2)
từ 1 và 2 => [(42n+9)-(42n+8)] chia hết cho d => (42n+9-42n-8)chia hết cho d => [(42n_42n) +(9-8)] chia hết cho d => 1 chia hết cho d => d =1 mà d lại là ưcln {21n+4 và 14n+3)(n thuộc N)
vậy biểu thức đã được chứng minh
Để CM \(\frac{n+5}{n+4}\) là phân số tối giản thì ta cần chứng minh n + 5 và n + 4 là nguyên tố cùng nhau
Gọi d là ước chung lớn nhất của n + 5 và n + 4
=> n + 5 và n + 4 chia hết cho d
=> (n + 5) - (n + 4) chia hết cho d
=> 1 chia hết cho d => d = 1
Vì ước chung lớn nhất của n + 5 và n + 4 là 1 => n + 5 và n + 4 là nguyên tố cùng nhau
=> \(\frac{n+5}{n+4}\) là phân số tối giản (đpcm)
gọi d là ƯCLN ( 21n + 4 ; 14n + 3 )
\(\Rightarrow\)21n + 4 \(⋮\)d \(\Rightarrow\)2 . ( 21n + 4 ) \(⋮\)d \(\Rightarrow\)42n + 8 \(⋮\)d ( 1 )
\(\Rightarrow\)14n + 3 \(⋮\)d \(\Rightarrow\)3 . ( 14n + 3 ) \(⋮\)d \(\Rightarrow\)42n + 9 \(⋮\)d ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)( 42n + 9 ) - ( 42n + 8 ) = 1 \(⋮\)d
\(\Rightarrow\)d = 1 mà ƯCLN ( 21n + 4 ; 14n + 3 ) = d nên phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản