K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2019

Gọi ƯCLN(n-5;3n-14) là d, Ta có :

 n-5 =3n-15 chia hết cho d ; 3n-14 chia hết cho d      

=>(n-5)-(3n-14)=1 chia hết cho d

=>d=1 hoặc -1 =>n-5 và 3n-14 là psố tối giản

25 tháng 2 2019

k cho min nha !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

bài này dễ mà

n - 5 = 3 {n-5} = 3n-15

suy ra : 3n-15 : 3n-14 = -1 mà Ước của 1 phân số là 1 với -1 thế nên phân số đó là phân số tối giản

3 tháng 1 2017

Gọi d là ƯCLN(15n+1,3n+1)

Hay 15n+1 chia hết cho d, 3n+1 chia hết cho d

Hay (15n+1-3n+1) chia hết cho d

Hay 12 chia hết cho d

Hay d thuộc ước của 12

Ư(12)={1;2;3;4;6;12}

Mà khi d=1 thì phân số trên sẽ không cùng chia hết cho một số bất kì nào nữa có nghĩa là khi đó d mới là phân số tối giản.

Mà d ở phân số trên có nhiều hơn 1 ước nên phân số trên không là phân số tối giản.

Ví dụ: nếu d=5 thì 15.5+1/3.5+1=76/16=19/4 chưa là phân số tối giản.

Kết luận:đề bài sai.

tk mình nha, mình rõ nhất

gọi ƯCLN(2n+3;3n+5)=d

2n+3 chia hết cho d

=>6n+9 chia hết cho d

3n+5 chia hết cho d

=>6n+10 chia hết cho d

=>1 chia hết cho d

=>d=1

\(\Rightarrow\frac{2n+3}{3n+5}\)tối giản

12 tháng 8 2015

Gọi ƯCLN(2n+3; 3n+5) là d. Ta có:

2n+3 chia hết cho d => 6n+9 chia hết cho d

3n+5 chia hết cho d =? 6n+10 chia hết cho d

=> 6n+10-(6n+9) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

=> d = 1

=> ƯCLN(2n+3; 3n+5) = 1

=> \(\frac{2n+3}{3n+5}\)tối giản (đpcm)

6 tháng 7 2021

Gọi d là (2n+5;3n+7)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

=> [6n+15 - ( 6n+14 )] \(⋮\) d 

=> 1 \(⋮\)d

=> phân số trên tối giản 

\(\frac{-n3+1}{3n}=\frac{-3n+1}{3n}\)

Gọi d = ƯCLN( -3n + 1; 3n ). Ta có :

\(\hept{\begin{cases}-3n+1⋮d\\3n⋮d\end{cases}\Leftrightarrow-3n+1+3n⋮d\Leftrightarrow1⋮d}\)

Vậy \(d\in\left\{1;-1\right\}\), suy ra \(\frac{-n3+1}{3n}\) tối giản ( đpcm )

Gọi d = ƯCLN( -n + 14; 3n - 11). Ta có :

\(\hept{\begin{cases}-n+14⋮d\\3n-11⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}3n-42⋮d\\3n-11⋮d\end{cases}\Leftrightarrow}3n-42-3n+11⋮d\Leftrightarrow-31⋮d}\)

Vậy \(d\in\left\{1;31;-1;-31\right\}\), suy ra \(\frac{-n+14}{3n-11}\) tối giản ( đpcm )

AH
Akai Haruma
Giáo viên
28 tháng 8 2024

Lời giải:
Gọi $d=ƯCLN(n-5, 3n-14)$

$\Rightarrow n-5\vdots d; 3n-14\vdots d$

$\Rightarrow 3n-14-3(n-5)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$

Do đó $\frac{n-5}{3n-14}$ là phân số tối giản.