Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2+1/3+1/4+….+1/63+1/6t4>3
< => (1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+…+1/16)+(1/17+1/18+….+1/31)+(1/32+1/33+…..+1/64)>4
Mà 1/2+1/3+1/4>1/2+1/4+1/4=1
1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/2
Tương tự ta có 1/9+1/10+…+1/16>8/16=1/2
1/17+1/18+…+1/31>16/31=1/2
Và 1/32+1/33+…+1/64>32/64=1/2
1/2=1/2
1/3+1/4>1/4+1/4=1/2
1/5+…+1/8>4*1/8=1/2
1/9+…+1/16>8*1/16=1/2
1/2+1/3+1/4+…+1/16>4*1/2=2
1/2+1/3+1/4+…+1/63>1/2+1/3+1/4+…+1/16
suy ra: 1/2+1/3+1/4+…+1/63>2
Giải
1/2 + 1/3 + 1/4 + ... + 1/63 > 1/31 + 1/31 + ... + 1/31 ( 62 số hạng 1/31 )
hay 1/2 + 1/3 + 1/4 + ... + 1/63 > 62 x 1/31
nên 1/2 +1/3 + 1/4 + ... + 1/63 > 1 (dpcm)
ko biết đúng ko nữa
S = 1 + 2 + 22 + 23 +24 + 25 +...+ 260 + 261 + 262 + 263
= ( 1 + 22) +( 2 + 23) + (24 + 26) + ( 25 + 27) +...+ (260 + 262) + ( 261 + 263)
=( 1 + 22) + 2 ( 1 + 22) + 24 (1 + 22) + 25 (1 +22)+...+ 260 ( 1 + 22) + 261( 1 + 22)
= ( 1 + 22)( 1 + 2 +24 + 25 +...+ 260)
= 5 ( 1 + 2 +24 + 25 +...+ 260)
Vậy S chia hết cho 5 vì có một thừa số là 5.