Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi d la UC(n+1,2n+3)
Ta co:n+1:d suy ra 2(n+1):d suy ra 2n+2 :d
Va 2n+3:d
suy ra 2n+3-(2n+2)
2n+3-2n-2:d
1:d suy ra d thuoc U(1)=(1;-1)
suy ra (2n+2,2n+3)=1
Vi 2n+2 va 2n+3 co 2 uoc la 1va -1
nen phan so n+1/2n+3 toi gian
a. Muốn phân số n+1/2n+3 tối giản thì n+1 và 2n+3 có ƯCLN=1
Giả sử n+1 và 2n+3 có ước là a
=>n+1 chia hết cho a và 2n+3 chia hết cho
=>2(n+1) chia hết cho a và 2n+3 chia hết cho a
=>2n+2 chia hết cho a và 2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=> 1 chia hết cho a hay a thuộc Ư(1) = {1}
Vậy phân số n+1/2n+3 tối giản
Bây giờ mk bận, tối về giải tiếp nhé
a) \(\frac{n}{2n+1}\)
Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)
\(\Rightarrow\left(2n+1\right)-2n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n;2n+1\right)=1\)
\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản
b) \(\frac{2n+3}{4n+8}\)
Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)
\(\Rightarrow d\ne2\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)
\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản
Lời giải:
a/
Gọi ƯCLN(n+1, 2n+3)=d$
Khi đó:
$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$
$2n+3\vdots d(2)$
Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản.
Câu b,c làm tương tự.
a) Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath