K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(x-y\right)\left(x^2-2xy+y^2+3xy\right)=\left(x-y\right)\left(\left(x-y\right)^2-3xy\right)\)

Thay  \(x-y=2\), ta được

\(2\left(2^2-3xy\right)=8-6xy\left(dpcm\right)\)

14 tháng 12 2016

\(x^2+y^2+1\ge xy+x+y\)

Áp dụng BĐT AM-GM ta có:

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\left(1\right)\)

\(y^2+1\ge2\sqrt{y^2}=2y\left(2\right)\)

\(x^2+1\ge2\sqrt{x^2}=2x\left(3\right)\)

Cộng theo vế của (1);(2) và (3) ta có:

\(2\left(x^2+y^2+1\right)\ge2\left(xy+x+y\right)\Leftrightarrow x^2+y^2+1\ge xy+x+y\)

Dấu "=" khi \(x=y\)

 

11 tháng 5 2019

\(\left(x-y\right)^3+4y\left(2x^2+y^2\right)=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)

\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)

\(\Leftrightarrow\left(-3x^2y+8x^2y\right)+3xy^2+3y^3=\left(3x^2y+2x^2y\right)+3xy^2+3y^2\)

\(\Leftrightarrow5x^2y+3xy^2+3y^2=5x^2y+3xy^2+3y^2\)

11 tháng 10 2016

\(x^4+y^4+\left(x+y\right)^4=2\left(x^4+y^4+2x^3y+3x^2y^2+2xy^3\right)\)

\(=2\left(\left(x^4+y^4+2x^2y^2\right)+\left(2x^3y+2xy^3\right)+x^2y^2\right)\)

\(=2\left(\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right)\)

\(=2\left(x^2+y^2+xy\right)^2\)

11 tháng 10 2016

Đặt x2 + xy + y2 = a2 ; x + y = b.Ta có :

a4 = (a2)2 = (x2 + xy + y2)2 = x4 + y4 + x2y2 + 2x3y + 2xy2 + 2x2y2 = x4 + y4 + x2y2 + 2xy(x2 + y2 + xy) = x4 + y4 + x2y2 + 2xya2 (1)

mà b = x + y

=> b2 = x2 + y2 + 2xy = a2 + xy => b4 = a4 + x2y2 + 2a2xy .Từ (1) và (2) ,ta có :

2a4 = x4 + y4 + a4 + x2y2 + 2xya2 = x4 + y4 + b4.Thay a2 = x2 + xy + y2 ; b = x + y,ta có đpcm

<=>