K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(x-y)^2 >= 0 ; (y-z)^2 >= 0 ; (x-z)^2 >= 0

=>(x-y)^2+(y-z)^2+(x-z)^2 >= 0

=>2x^2+2y^2+2z^2-2xy-2yz-2xz >= 0

=>2x^2+2y^2+2z^2 >= 2xy+2yz+2xz

=>x^2+y^2+z^2 >= xy+yz+xz

26 tháng 3 2016

nhần đổi của  về rùi chuyển vế bạn sẽ dc (x-y)^2 + (y-z)^2 + (Z-X) ^2 >=0 dáu = xảy ra khi x=y=z , xong nhá

27 tháng 3 2016

Từ đề bài suy ra:\(x^2+y^2+z^2-2xy+2xz-2yz\ge0\)

\(\left(x-y\right)^2+\left(x+z\right)^2+\left(y-z\right)^2\ge0\)

Đẳng thức này đúng với mọi số x,y,z

Vậy \(x^2+y^2+z^2\ge2\left(xy-xz+yz\right)\) (đpcm)

28 tháng 3 2016

x,y,z phải là các cạnh trong tam giác chơ

0\le xy+yz+zx-2xyz\le \frac{7}{27} - Diễn đàn Toán học

10 tháng 12 2016

\(VP=\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=x^2+2xy+2xz+y^2+2yz+z^2-x^2-y^2-z^2\)

\(=2xy+2yz+2xz=2\left(xy+yz+xz\right)=VP\)

Suy ra điều phải chứng minh

 

 

15 tháng 5 2018

Giải:

\(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+\left(y^2-2yz+z^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\ge0\) (luôn đúng với mọi x, y, z)

Vậy ...

30 tháng 4 2016
<=> x^2+y^2+z^2+2xy+2yz+2zx-3xy-3yz-3zx≥0 <=> x^2+y^2+z^2-xy-yz-zx≥0 <=> 2x^2+2y^2+2z^2-2xy-2yz-2zx≥0 <=> (x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2) <=> (x-y)^2+(y-z)^2+(z-x)^2≥0 (luôn đúng)

\(\left(x+y+z\right)^2=\left(x+y\right)^2+2\left(x+y\right)z+z^2=x^2+2xy+2xz+2yz+z^2+y^2\)

sau đó chứng minh x2+y2+z2>(=)xy+yz+zx là được

14 tháng 6 2017

\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)

\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)

\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)