Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tích : \(\left[x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\right]\left(x+y+z\right)\)
=\(x^3\left(z-y\right)+x^2\left(z-y\right)\left(z+y\right)+y^3\left(x-z\right)+y^2\left(x-z\right)\left(x+z\right)\)
\(+z^3\left(y-x\right)+z^2\left(y-x\right)\left(y+x\right)\)
\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)+x^2\left(z^2-y^2\right)+y^2\left(x^2-z^2\right)+z^2\left(y^2-x^2\right)\)
\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)+x^2z^2-x^2y^2+y^2x^2-y^2z^2+z^2y^2-z^2x^2\)
\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)\)
Như vậy:
\(\left[x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\right]\left(x+y+z\right)\)\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)\)
<=> \(\frac{x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)}{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}=x+y+z\)
Ta có: \(\frac{\frac{x^2\left(z-y\right)}{yz}+\frac{y^2\left(x-z\right)}{xz}+\frac{z^2\left(y-x\right)}{xy}}{\frac{x\left(z-y\right)}{yz}+\frac{y\left(x-z\right)}{xz}+\frac{z\left(y-x\right)}{xy}}\)
\(=\frac{\frac{x^3\left(z-y\right)}{xyz}+\frac{y^3\left(x-z\right)}{xyz}+\frac{z^3\left(y-x\right)}{xyz}}{\frac{x^2\left(z-y\right)}{xyz}+\frac{y^2\left(x-z\right)}{xyz}+\frac{z^2\left(y-x\right)}{xyz}}\)
\(=\frac{x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)}{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}=x+y+z\)
\(A=\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-xz}{\left(y+z\right)\left(y+x\right)}+\frac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)
\(=\frac{\left(x^2-yz\right)\left(y+z\right)+\left(y^2-xz\right)\left(z+x\right)+\left(z^2-xy\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{x^2y+x^2z-y^2z-yz^2+y^2z+y^2x-xz^2-x^2z+z^2x+z^2y-x^2y-xy^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{0}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)
Vậy : \(A=0\)
\(\frac{(x^2-yz)(y+z)}{(x+y)(x+z)(y+z)}\) = \(\frac{(y^2-xz)(x+z)}{(x+y)(x+z)(y+z)}\)= \(\frac{(z^2-xy)(x+y)}{(x+y)(x+z)(y+z)}\)
a, Chứng minh \(x^3+y^3+z^3=\left(x+y\right)^3-3xy.\left(x+y\right)+z^3\)
Biến đổi vế phải thì ta phải suy ra điều phải chứng minh
b, Ta có: \(a+b+c=0\)thì
\(a^3+b^3+c^3==\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab\left(-c\right)+c^3=3abc\)
( Vì \(a+b+c=0\)nên \(a+b=-c\))
Theo giả thuyết \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Khi đó \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
\(=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)
\(=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)\)
\(=xyz.\frac{3}{xyz}=3\)
Ta có: \(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}=\frac{x^2+xy-xy-yz}{\left(x+y\right)\left(x+z\right)}\)
\(=\frac{x\left(x+y\right)-y\left(x+z\right)}{\left(x+y\right)\left(x+z\right)}\)
\(=\frac{x}{x+z}-\frac{y}{x+y}\)
Tương tự: \(\frac{y^2-xz}{\left(x+y\right)\left(y+z\right)}=\frac{y}{y+z}-\frac{y}{x+y}\)
\(\frac{z^2-xz}{\left(x+z\right)\left(y+z\right)}=\frac{z}{y+z}-\frac{x}{x+z}\)
Do đó: \(A=\frac{x}{x+z}-\frac{y}{x+y}+\frac{y}{y+z}-\frac{x}{x+y}+\frac{z}{y+z}-\frac{x}{x+z}=0\)
\(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-xz}{\left(x+y\right)\left(y+z\right)}+\frac{z^2-xy}{\left(x+z\right)\left(y+z\right)}\)
\(=\frac{\left(x^2-yz\right).\left(y+z\right)}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}+\frac{\left(y^2-xz\right).\left(x+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}+\frac{\left(z^2-xy\right).\left(x+y\right)}{\left(x+z\right)\left(y+z\right)\left(x+y\right)}\)
\(=\frac{x^2y-y^2z+x^2z-yz^2+y^2x-x^2z+zy^2-xz^2+z^2x-x^2y+yz^2-xy^2}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)
\(=\frac{0}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)
\(=0\)\(\left(\text{Đ}K:x+y,y+z,z+x\ne0\right)\)
Tham khảo nhé~