Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT cần chứng minh tương đương :
a8+b8+c8a3b3c3≥ab+bc+acabca8+b8+c8a3b3c3≥ab+bc+acabc
⇔a8+b8+c8a2b2c2≥ab+bc+ac⇔a8+b8+c8a2b2c2≥ab+bc+ac
⇔a6b2c2+b6a2c2+c6a2b2≥ab+bc+ac⇔a6b2c2+b6a2c2+c6a2b2≥ab+bc+ac
Do a2+b2+c2≥ab+bc+aca2+b2+c2≥ab+bc+ac
Ta phải cm
a6b2c2+b6a2c2+c6a2b2≥a2+b2+c2a6b2c2+b6a2c2+c6a2b2≥a2+b2+c2(1)
Đặt : (a2;b2;c2)=(x;y;z)(a2;b2;c2)=(x;y;z)
⇒(1)⇔x3yz+y3xz+z3xy≥x+y+z⇒(1)⇔x3yz+y3xz+z3xy≥x+y+z
Áp dụng C.B.S
⇒x3yz+y3xz+z3xy=x4xyz+y4xyz+z4xyz≥(x2+y2+z2)23xyz⇒x3yz+y3xz+z3xy=x4xyz+y4xyz+z4xyz≥(x2+y2+z2)23xyz
Theo Bunhiacopxki: x2+y2+z2≥(x+y+z)23x2+y2+z2≥(x+y+z)23⇒(x2+y2+z2)2≥(x+y+z)49⇒(x2+y2+z2)2≥(x+y+z)49
Theo Cauchy : ⇒3xyz≤(x+y+z)39⇒3xyz≤(x+y+z)39
⇒(x2+y2+z2)23xyz≥(x+y+z)49(x+y+z)39=x+y+z⇒(x2+y2+z2)23xyz≥(x+y+z)49(x+y+z)39=x+y+z
⇒⇒⇒x3yz+y3xz+z3xy≥x+y+z⇒x3yz+y3xz+z3xy≥x+y+z
=> đpcm
Áp dụng BĐT: x2+y2+z2\(\ge\)xy+yz+zx ( với x,y,z >0)
Ta có\(\dfrac{a^8+b^8+c^8}{a^3b^3c^3}\)\(\ge\)\(\dfrac{a^4b^4+b^4c^4+c^4a^4}{a^3b^3c^3}\)
\(\ge\)\(\dfrac{a^4b^2c^2+b^4c^2a^2+c^4a^2b^2}{a^3b^3c^3}\)=\(\dfrac{a^2+b^2+c^2}{abc}\)\(\ge\)\(\dfrac{ab+bc+ca}{abc}\)
= \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)
Dấu "=" xảy ra \(\Leftrightarrow\) a=b=c
Lời giải:
Ta có:
\(\frac{a^8+b^8+c^8}{a^3b^3c^3}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)(*)\)
Áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} a^8+b^8\geq 2a^4b^4\\ b^8+c^8\geq 2b^4c^4\\ c^8+a^8\geq 2c^4a^4\end{matrix}\right.\Rightarrow a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\)
Tiếp tục áp dụng AM-GM:
\(a^8+b^8+a^4b^4+c^8\geq 4\sqrt[4]{a^{12}b^{12}c^8}=4a^3b^3c^2\)
\(b^8+c^8+b^4c^4+a^8\geq 4b^3c^3a^2\)
\(c^8+a^8+c^4a^4+b^8\geq 4c^3a^3b^2\)
Cộng lại: \(3(a^8+b^8+c^8)+(a^4b^4+b^4c^4+c^4a^4)\geq 4a^2b^2c^2(ab+bc+ca)\)
Mà \(a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\Rightarrow 4(a^8+b^8+c^8)\geq 4a^2b^2c^2(ab+bc+ac)\)
hay \(a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)\Rightarrow (*)\) đúng
Ta có đpcm.
Áp dụng bđt cosi cho 3 số dương a,b,c>0
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{a}.\dfrac{1}{b}.\dfrac{1}{c}}\)
Suy ra\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{a}.\dfrac{1}{b}.\dfrac{1}{c}}=9\sqrt[3]{\dfrac{abc}{abc}}=9\)
Vậy \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
Bạn tham khảo cách chứng minh tại đây :
Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến
Áp dụng : Theo BĐT \(AM-GM\) ta có :
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân vế theo vế ta được :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)
Dấu \("="\) xảy ra khi \(a=b=c\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\dfrac{a^2}{2}+\dfrac{b^2}{c}+\dfrac{c^2}{c}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)
\(\Leftrightarrow a^2-\dfrac{a^2}{2}+b^2-\dfrac{b^2}{2}+c^2-\dfrac{c^2}{2}\ge\dfrac{ab}{2}+\dfrac{bc}{2}+\dfrac{ca}{2}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{a^2+b^2+c^2+ab+bc+ca}{2}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{2\left(a^2+b^2+c^2+ab+bc+ca\right)}{4}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{4}\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
Tương tự ta có \(\left\{{}\begin{matrix}\left(b+c\right)^2\ge4bc\\\left(c+a\right)^2\ge4ca\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+b\right)^2c+\left(a+b\right)^2\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2a+\left(b+c\right)^2\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2b+\left(c+a\right)^2\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)^2\left(c+1\right)\ge4abc+\left(a+b\right)^2\\\left(b+c\right)^2\left(a+1\right)\ge4abc+\left(b+c\right)^2\\\left(c+a\right)^2\left(b+1\right)\ge4abc+\left(c+a\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}\le\dfrac{8}{4abc+\left(a+b\right)^2}\\\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}\le\dfrac{8}{4abc+\left(b+c\right)^2}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}\le\dfrac{8}{4abc+\left(c+a\right)^2}\end{matrix}\right.\) (2)
Từ (1) và (2)
\(\Rightarrow VT\ge\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\) (3)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{\left(a+b\right)^2}{4}\ge2\sqrt{\dfrac{2}{c+1}}=\dfrac{4}{\sqrt{2\left(c+1\right)}}\)
Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{\left(b+c\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(a+1\right)}}\\\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(c+a\right)^2}{4}\ge\dfrac{4}{\sqrt{2\left(b+1\right)}}\end{matrix}\right.\)
\(\Rightarrow\dfrac{8}{\left(a+b\right)^2\left(c+1\right)}+\dfrac{8}{\left(b+c\right)^2\left(a+1\right)}+\dfrac{8}{\left(c+a\right)^2\left(b+1\right)}+\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a^2\right)}{4}\ge\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\)(4)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt{2\left(c+1\right)}\le\dfrac{c+3}{2}\)
\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}\ge\dfrac{8}{c+3}\)
Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{4}{\sqrt{2\left(a+1\right)}}\ge\dfrac{8}{a+3}\\\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{b+3}\end{matrix}\right.\)
\(\Rightarrow\dfrac{4}{\sqrt{2\left(c+1\right)}}+\dfrac{4}{\sqrt{2\left(a+1\right)}}+\dfrac{4}{\sqrt{2\left(b+1\right)}}\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) (5)
Từ điều (3) , (4) , (5)
\(\Rightarrow\dfrac{8}{\left(a+b\right)^2+4abc}+\dfrac{8}{\left(b+c\right)^2+4abc}+\dfrac{8}{\left(c+a\right)^2+4abc}+a^2+b^2+c^2\ge\dfrac{8}{a+3}+\dfrac{8}{b+3}+\dfrac{8}{c+3}\) ( đpcm )
BĐT cần chứng minh tương đương :
\(\dfrac{a^8+b^8+c^8}{a^3b^3c^3}\ge\dfrac{ab+bc+ac}{abc}\)
\(\Leftrightarrow\dfrac{a^8+b^8+c^8}{a^2b^2c^2}\ge ab+bc+ac\)
\(\Leftrightarrow\dfrac{a^6}{b^2c^2}+\dfrac{b^6}{a^2c^2}+\dfrac{c^6}{a^2b^2}\ge ab+bc+ac\)
Do \(a^2+b^2+c^2\ge ab+bc+ac\)
Ta phải cm
\(\dfrac{a^6}{b^2c^2}+\dfrac{b^6}{a^2c^2}+\dfrac{c^6}{a^2b^2}\ge a^2+b^2+c^2\)(1)
Đặt : \(\left(a^2;b^2;c^2\right)=\left(x;y;z\right)\)
\(\Rightarrow\left(1\right)\Leftrightarrow\dfrac{x^3}{yz}+\dfrac{y^3}{xz}+\dfrac{z^3}{xy}\ge x+y+z\)
Áp dụng C.B.S
\(\Rightarrow\dfrac{x^3}{yz}+\dfrac{y^3}{xz}+\dfrac{z^3}{xy}=\dfrac{x^4}{xyz}+\dfrac{y^4}{xyz}+\dfrac{z^4}{xyz}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3xyz}\)
Theo Bunhiacopxki: \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)\(\Rightarrow\left(x^2+y^2+z^2\right)^2\ge\dfrac{\left(x+y+z\right)^4}{9}\)
Theo Cauchy : \(\Rightarrow3xyz\le\dfrac{\left(x+y+z\right)^3}{9}\)
\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{3xyz}\ge\dfrac{\dfrac{\left(x+y+z\right)^4}{9}}{\dfrac{\left(x+y+z\right)^3}{9}}=x+y+z\)
\(\Rightarrow\)\(\Rightarrow\dfrac{x^3}{yz}+\dfrac{y^3}{xz}+\dfrac{z^3}{xy}\ge x+y+z\)
=> đpcm