K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

\(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\) 

\(=a^3+b^3+a^3-b^3=2a^3\Rightarrowđpcm\)

31 tháng 8 2015

VT = ( a + b )(a^2 - ab + b^2) + ( a-  b)(a^2 + ab + b^2) 

    = a^3 + b^3 + a^3 - b^3

     = 2a^3 

    =VP

=> ĐPCM 

24 tháng 9 2015

 

1/

\(\left(1\right)=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\)

2/

\(\left(2\right)=a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)

\(\left(2\right)=\left(a+b\right).\left[\left(a^2-2ab+b^2\right)+ab\right]=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

3/

\(\left(3\right)=\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)

\(\left(3\right)=\left[\left(ac\right)^2+2acbd+\left(bd\right)^2\right]+\left[\left(ad\right)^2-2adbc+\left(bc\right)^2\right]\)(do t/c giao hoán trong phép nhân => 2acbd=2adbc)

\(\left(3\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

9 tháng 7 2015

a) Vế trái = a2 - 3a + 2 + a2 - 7a + 12 - 2a2 - 5a + 34 = (a2 + a2 - 2a2) + (-3a - 7a - 5a) + 2 + 12 + 34 = -15a + 48 khác vê phải 

=> đề sai

b) Vế trái = a3 - b3 - (a3 + b3) = -2b3 = vế phải => đpcm

13 tháng 7 2016

ap dung hang dang thuc

(a^3+b^3)+(a^3-b^3)=a^3+b^3+a^3-b^3=2a^3 (dpcm)

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

18 tháng 1 2021

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Dấu ''='' xảy ra <=> a = b = c = 1 

16 tháng 8 2016

đề phần a thừa số 2

 

16 tháng 8 2016

thảo nào k ra

13 tháng 9 2017

a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

=\(a^3+b^3+\left(a^3-b^3\right)\)

=\(a^3+b^3+a^3-b^3\)

=\(2a^3\)

b) \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

=\(\left(a+b\right)\left(a^2-2ab+b^2-ab\right)\)

=\(\left(a+b\right)\left[\left(a^2-2ab+b^2\right)-ab\right]\)

=\(\left(a+b\right)\left[\left(a-b\right)^2-ab\right]\)

13 tháng 9 2017

a. \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3+a^3-b^3=2a^3\)

b. \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)