Bài 1: Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}\)=\(\frac{a}{c}\), C/m \(\frac{\overline{abb...b}}{\overline{bbb...bc}}\)(n số b) = \(\frac{a}{c}\)
Bài 2:\(\frac{x}{3y}=\frac{y}{2x-5y}=\frac{6x-15y}{x}\)
Tìm giá trị (x+y) khi \(-4x^2+36y-8\)đạt giá trị nhỏ nhất
Bài 3: Cho tam giác ABC với 3 cạnh a=BC, b=CA,c=AB thỏa mãn \(a\ge b\ge c\). Gọi ha,hb,hc lần lượt là chiều cao xuất phát từ các đỉnh A,B,C của tam giác ABC. Chứng...
Đọc tiếp
Bài 1: Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}\)=\(\frac{a}{c}\), C/m \(\frac{\overline{abb...b}}{\overline{bbb...bc}}\)(n số b) = \(\frac{a}{c}\)
Bài 2:\(\frac{x}{3y}=\frac{y}{2x-5y}=\frac{6x-15y}{x}\)
Tìm giá trị (x+y) khi \(-4x^2+36y-8\)đạt giá trị nhỏ nhất
Bài 3: Cho tam giác ABC với 3 cạnh a=BC, b=CA,c=AB thỏa mãn \(a\ge b\ge c\). Gọi ha,hb,hc lần lượt là chiều cao xuất phát từ các đỉnh A,B,C của tam giác ABC. Chứng minh rằng:
\(\frac{hc-hb}{ha}+\frac{hb-ha}{hc}+\frac{ha-hc}{hb}\ge0\)
Bài 4: Cho \(\frac{a}{b}>\frac{x}{y}>\frac{c}{d}\)với x,y,a,b,c,d \(\in Z^+\). Nếu ad-bc=1. C/m \(x\ge a+c\) \(y\ge b+d\)
Bài 5, Tìm giá trị x,y,z để biểu thức
\(A=|7x-5y|+|2z-3x|+|xy+yz+zx-2000|+2016\)đạt giá trị nhỏ nhất
Bài 6, Tìm x,y,z biết \(\dfrac{x}{y+z-5}=\dfrac{y}{x+z+3}=\dfrac{z}{x+y+2}=\dfrac{1}{2}\)(x+y+z)
Bài 7 Cho biết \(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)
C/m \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}c^{42}\)
Ta có:
\(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)
\(\Rightarrow\dfrac{10a}{b}+\dfrac{b}{b}=\dfrac{10b}{c}+\dfrac{c}{c}=\dfrac{10c}{a}+\dfrac{a}{a}\)
\(\Rightarrow\dfrac{10a}{b}+1=\dfrac{10b}{c}+1=\dfrac{10c}{a}+1\)
\(\Rightarrow\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}=\dfrac{10a+10b+10c}{b+c+a}=\dfrac{10\left(a+b+c\right)}{a+b+c}=10\)
\(\Rightarrow\left\{{}\begin{matrix}10a=10b\\10b=10c\\10c=10a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow\left(\overline{abc}\right)^{123}=\left(\overline{aaa}\right)^{123}\)(1)
\(\Rightarrow c=111^{123}.a^{40}.a^{41}.a^{42}=111^{123}.a^{123}=\left(111.a\right)^{123}=\left(\overline{aaa}\right)^{123}\)(2)
Từ (1) và (2) suy ra: \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}.c^{42}\)