K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

Ta có:

\(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)

\(\Rightarrow\dfrac{10a}{b}+\dfrac{b}{b}=\dfrac{10b}{c}+\dfrac{c}{c}=\dfrac{10c}{a}+\dfrac{a}{a}\)

\(\Rightarrow\dfrac{10a}{b}+1=\dfrac{10b}{c}+1=\dfrac{10c}{a}+1\)

\(\Rightarrow\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}=\dfrac{10a+10b+10c}{b+c+a}=\dfrac{10\left(a+b+c\right)}{a+b+c}=10\)

\(\Rightarrow\left\{{}\begin{matrix}10a=10b\\10b=10c\\10c=10a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)

\(\Rightarrow\left(\overline{abc}\right)^{123}=\left(\overline{aaa}\right)^{123}\)(1)

\(\Rightarrow c=111^{123}.a^{40}.a^{41}.a^{42}=111^{123}.a^{123}=\left(111.a\right)^{123}=\left(\overline{aaa}\right)^{123}\)(2)

Từ (1) và (2) suy ra: \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}.c^{42}\)

9 tháng 11 2018

ta có (a+b-c/c)+2=(a-b+c/b)+2=(-a+b+c/a)+2

=>a+b-c+2c/c=a-b+c+2b/b=-a+b+c+2a/a

=>a+b+c/c=a+b+c/b=a+b+c/a     (1)

Trường hợp 1

Nếu a+b+c=0 => a+b=-c

                       => b+c=-a

                       =>  a+c=-b

M= (-c)(-a)(-a)/abc = -1

Trường hợp 2

Từ (1) =>(a+b+c). 1/c =(a+b+c). 1/b =(a+b+c). 1/a

=>1/a=1/b=1/c

Từ (1) =>3(a+b+c)/a+b+c=3

hay (a+b/c)+1=(a+c/b)+1=(b+c/a)=2

9 tháng 11 2018

Nguyễn Trọng Tâm Đạt làm sai một TH nhé =)

trường hợp 2

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

\(2+\frac{a+b-c}{c}=2+\frac{a-b+c}{b}=2+\frac{-a+b+c}{a}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)

\(\Rightarrow a=b=c\)

thay a=b=c vào M ta có

\(M=\frac{\left(b+b\right).\left(b+c\right).\left(c+a\right)}{a.b.c}=\frac{2a.2a.2a}{aaa}=\frac{8.a^3}{a^3}=8\)

22 tháng 1 2016

không làm thì thôi đi rối mắt kệ các bạn chứ ai hỏi đâu mà phô ra

22 tháng 1 2016

Thùy Giang : bn nói đúng , bọn này ngu mà cứ thích cmt linh tinh

18 tháng 11 2016

Vậy dã dễ dàng thấy :

a.3 + c = 3 . a + b = 3 . b + c  và a = b = c

Tương tự dãy dưới tính ra :

4 + 4 + 4 = 12

Dãy tính bằng 12

19 tháng 11 2016

Ban tren oi co the giai thich can ke ra duoc khong ?

19 tháng 12 2017

cộng thêm 1 của mỗi đẳng thức :

\(\frac{a}{b+c}+1=\frac{c}{a+b}+1=\frac{b}{c+a}+1\)

hay \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+b}=\frac{a+b+c}{c+a}\)

với a + b + c = 0 thì :

b + c = -a ; a + b = -c ; c + a = -b

nên \(20.\left(\frac{a}{b+c}\right)+3.\left(\frac{c}{a+b}\right)+1998.\left(\frac{b}{c+a}\right)=20.\left(\frac{a}{-a}\right)+3.\left(\frac{c}{-c}\right)+1998.\left(\frac{b}{-b}\right)\)

hay \(20.\left(-1\right)+3.\left(-1\right)+1998.\left(-1\right)=-20+\left(-3\right)+\left(-1998\right)=-2021\)

với a + b + c khác 0 thì : a = b = c

nên \(20.\left(\frac{a}{b+c}\right)+3.\left(\frac{c}{a+b}\right)+1998.\left(\frac{b}{c+a}\right)=20.\frac{1}{2}+3.\frac{1}{2}+1998.\frac{1}{2}=\frac{2021}{2}\)

19 tháng 12 2017

Nếu a+b+c = 0 => Biểu thức = 20.(-1)+3.(-1)+1998.(-1) = -2021

Nếu a+b+c khác 0 thì :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

a/b+c = c/a+b = b/c+a = a+b+c/2a+2b+2c = 1/2

=> Biểu thức = 20.1/2+3.1/2+1998.1/2 = 2021/2

Vậy ............

k mk nha

9 tháng 11 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

a, Ta có:\(\frac{a-b}{a+b}=\frac{bk-b}{bk+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)

Lại có \(\frac{c-d}{c+d}=\frac{dk-d}{dk+d}=\frac{d.\left(k-1\right)}{d.\left(k+1\right)}=\frac{k-1}{k+1}\left(2\right)\)

Từ (1) và (2) => ĐPCM

b, Ta có \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)

Lại có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => ĐPCM

12 tháng 11 2018

đi mà làm