\(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

Ta có:

\(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)

\(\Rightarrow\dfrac{10a}{b}+\dfrac{b}{b}=\dfrac{10b}{c}+\dfrac{c}{c}=\dfrac{10c}{a}+\dfrac{a}{a}\)

\(\Rightarrow\dfrac{10a}{b}+1=\dfrac{10b}{c}+1=\dfrac{10c}{a}+1\)

\(\Rightarrow\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}=\dfrac{10a+10b+10c}{b+c+a}=\dfrac{10\left(a+b+c\right)}{a+b+c}=10\)

\(\Rightarrow\left\{{}\begin{matrix}10a=10b\\10b=10c\\10c=10a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)

\(\Rightarrow\left(\overline{abc}\right)^{123}=\left(\overline{aaa}\right)^{123}\)(1)

\(\Rightarrow c=111^{123}.a^{40}.a^{41}.a^{42}=111^{123}.a^{123}=\left(111.a\right)^{123}=\left(\overline{aaa}\right)^{123}\)(2)

Từ (1) và (2) suy ra: \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}.c^{42}\)

31 tháng 10 2016

bài gì khó thế!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

bí bí bí

28 tháng 8 2016

1/ a = 2100 = (24)25 = 1625

b = 375 = (33)25 = 2725

c = 550 = (52)25 = 2525

Do: 16 < 25 < 27  => 1625 < 2525 < 2725  => 2100 < 550 < 375  => a < c < b

28 tháng 8 2016

thank nhìu :3

26 tháng 2 2020

Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

Từ \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\Rightarrow\frac{1}{a}=\frac{1}{c}\)

Tương tự suy ra \(\frac{1}{c}=\frac{1}{b};\frac{1}{b}=\frac{1}{a}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Ta có \(ab^2+bc^2+ca^2=a^3+b^3+c^3\)(đccm)

26 tháng 2 2020

\(\text{Một cách khác}\)

\(\text{Ta có:}\)

\(\frac{ab}{a+b}=\frac{bc}{b+c}\)

\(\Leftrightarrow ab\left(b+c\right)=bc\left(a+b\right)\)

\(\Leftrightarrow ab^2+abc=abc+b^2c\)

\(\Leftrightarrow a=c\left(1\right)\)

\(\frac{bc}{b+c}=\frac{ca}{a+c}\)

\(\Rightarrow bc\left(a+c\right)=ca\left(b+c\right)\)

\(\Rightarrow abc+bc^2=abc+c^2a\)

\(\Rightarrow b=a\left(2\right)\)

\(Từ\)\(\text{(1) và (2)}\)\(\Rightarrow a=b=c\)

\(\text{Ta có :}\)\(ab^2+bc^2+ca^2=a^3+b^3+c^3\)