Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+16\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+16\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+16\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+121\)
\(=\left(a^2+8a+11\right)^2\)
b: \(\left(a-b\right)\left(a-2b\right)\left(a-3b\right)\left(a-4b\right)+b^4\)
\(=\left(a^2-5ab+4b^2\right)\left(a^2-5ab+6b^2\right)+b^4\)
\(=\left(a^2-5ab\right)^2+10b^2\left(a^2-5ab\right)+24b^4+b^4\)
\(=\left(a^2-5ab\right)^2+2\cdot\left(a^2-5ab\right)\cdot5b^2+\left(5b^2\right)^2\)
\(=\left(a^2-5ab+5b^2\right)^2\)
Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2-2b^2+a-b=b^2\)
\(\Rightarrow2\left(a-b\right)\left(a+b\right)+\left(a-b\right)=b^2\)
\(\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\left(1\right)\)
Đặt \(ƯCLN\left(a-b;2a+2b+1\right)=d\) suy ra:
\(\hept{\begin{cases}\left(a-b\right)⋮d\\2a+2b+1⋮d\end{cases}}\) \(\Rightarrow b^2=\left(a-b\right)\left(2a+2b+1\right)⋮d^2\)
\(\Rightarrow b⋮d\). Lại có:
\(2\left(a-b\right)-\left(2a+2b+1\right)⋮d\Rightarrow-4b-1⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Leftrightarrow a-b\) và \(2a+2b+1\) là hai số nguyên tố cùng nhau \(\left(2\right)\)
Kết hợp \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(a-b\) và \(2a+2b+1\) là các số chính phương (Đpcm)
a, A=(a+1)(a+3)(a+5)(a+7)+16
=[(a+1)(a+7)][(a+3)(a+5)] +16
= (a^2+8a+7)(a^2+8a+15) +16
Đặt a^2+8a+7=t,ta có:
A = t(t+8)+16
= t^2 +8t+16
= (t+4)^2
= (a^2+8a+11)^2
b, B = a(a+1)(a+2)(a+3)+1
= a(a+3)(a+1)(a+2)+1
= (a^2+3a)(a^2+3a+2) +1
Đặt a^2 +3a =k,ta có:
B =k(k+2)+1
= k^2 +2k+1
= (k+1)^2
= (a^2+3a+1)^2
c,C = (a-b)(a-4b)(a-2b)(a-3b)
= (a^2 -5ab+4b^2)(a^2 -5ab+6b^2) +b^4
Đặt a^2 -5ab+5b^2 =c,ta có:
C = (c-b^2)(c+b^2)+b^4
= c^2 -b^4+b^4
= c^2
= (a^2-5ab+5b^2)^2
Bạn nên áp dụng phương pháp đổi biến thì làm sẽ dễ dàng hơn. Mình cho bạn 1 cách: Thường có 4 thừa số nhân với nhau và cộng thêm 1 số thì bạn nhóm thừa số thứ 1 và thừa số thứ 4,thừa số thứ 2 và thừa số thứ 3 rồi bạn thấy cái gì chung trong 2 thừa số thi bạn đổi biến là a,b,c,...Chúc bạn học tốt.
Ta đặt \(a^2+4b+3=k^2\)
\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)
Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)
Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)
\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)
\(\Leftrightarrow c^2+c+1+b=l^2\)
Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.
Nếu \(c< b< 2c+1\) thì
\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.
Do vậy, \(c=b\) hay \(a=2b+1\)
Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.
https://olm.vn/hoi-dap/detail/92192540983.html
Câu hỏi của La Văn Lết - Toán lớp 8
Bạn tham khảo ở đây nhé
Câu hỏi của La Văn Lết - Toán lớp 8 - Học toán với OnlineMath
Em thma khảo bài làm tại link này nhé!
Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.
Ta có: \(2a^2+a=3b^2+b\)
\(\Leftrightarrow\left(2a^2-2b^2\right)+\left(a-b\right)=b^2\)
\(\Leftrightarrow\left(2a+2b\right)\left(a-b\right)+\left(a-b\right)=b^2\)
\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)
*CM 2a+2b+1 và a-b nguyên tố cùng nhau
=> 2a+2b+1 cũng là 1 SCP
Ta có:
\(2a^2+a=3b^2+b\)
\(\Leftrightarrow2a^2-2b^2+a-b=b^2\)
\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)
Ta có:
Đặt \(d=\left(a-b,2a+2b+1\right)\).
\(\Rightarrow\hept{\begin{cases}a-b⋮d\\2a+2b+1⋮d\end{cases}}\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2⋮d^2\Rightarrow b⋮d\)
\(\Rightarrow\left(a-b\right)+b=a⋮d\)
\(\Rightarrow\left(2a+2b+1\right)-2a-2b=1⋮d\Rightarrow d=1\).
Do đó \(a-b,2a+2b+1\)là hai số chính phương.
giải toán , trước đây mua 15 quyển vở phải trả 105000 đồng,hiện nay giá bán mỗi quyển vở giảm đi 2000 đồng, hỏi với 105000 đồng , hiện nay có thể mua được bao nhiêu quyển vở như thế
\(\left(a+b\right)\left(a+2b\right)\left(a+3b\right)\left(a+4b\right)+b^4\)
\(=\left(a+b\right)\left(a+4b\right)\left(a+2b\right)\left(a+3b\right)+b^4\)
\(=\left(a^2+5ab+4b^2\right)\left(a^2+5ab+6b^2\right)+b^4\)
Đặt\(a^2+5ab+5b^2=t\)
Biểu thức đã cho bằng\(\left(t-b^2\right)\left(t+b^2\right)+b^4\)
\(=t^2-b^4+b^4=t^2\)
Mà\(a;b\in Z\Rightarrow t\in Z\Rightarrow t^2\)là số chính phương