Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{yz}{xz}=\frac{1}{2}\Rightarrow\frac{y}{x}=\frac{1}{2}\)
\(\frac{x}{yz}:\frac{y}{xz}=\frac{x}{yz}\cdot\frac{xz}{y}==\frac{x^2}{y^2}\)
Vì \(\frac{y}{x}=\frac{1}{2}\Rightarrow\frac{x}{y}=2\Rightarrow\frac{x^2}{y^2}=2^2=4\)
=> x/yz : y/xz = 4
\(\frac{zx}{yz}=\frac{1}{2}\Rightarrow\frac{x}{y}=\frac{1}{2}\)
\(\frac{x}{yz}:\frac{y}{xz}=\frac{x}{yz}.\frac{xz}{y}=\frac{x^2}{y^2}\)
Mà \(\frac{x}{y}=\frac{1}{2}\Rightarrow\left(\frac{x}{y}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
Vậy \(\frac{x}{yz}:\frac{y}{zx}=\frac{1}{4}\)
Ta có: \(\frac{yz}{zx}=\frac{1}{2}\Rightarrow2yz=zx\Rightarrow2y=x\Rightarrow\frac{x}{y}=2\)
\(\frac{x}{yz}:\frac{y}{zx}=\frac{x^2z}{y^2z}=\frac{x^2}{y^2}=\left(\frac{x}{y}\right)^2=2^2=4\)
Vậy \(\frac{x}{yz}:\frac{y}{zx}=4\)
tại sao bạn => được \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}=0\)
ai tl giup t di ma