K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2017

Ta có: \(\frac{yz}{zx}=\frac{1}{2}\Rightarrow2yz=zx\Rightarrow2y=x\Rightarrow\frac{x}{y}=2\)

\(\frac{x}{yz}:\frac{y}{zx}=\frac{x^2z}{y^2z}=\frac{x^2}{y^2}=\left(\frac{x}{y}\right)^2=2^2=4\)

Vậy \(\frac{x}{yz}:\frac{y}{zx}=4\)

25 tháng 2 2017

kcj

7 tháng 2 2021

giúp mình với nhé!

20 tháng 1 2017

\(\frac{zx}{yz}=\frac{1}{2}\Rightarrow\frac{x}{y}=\frac{1}{2}\)

\(\frac{x}{yz}:\frac{y}{xz}=\frac{x}{yz}.\frac{xz}{y}=\frac{x^2}{y^2}\)

Mà \(\frac{x}{y}=\frac{1}{2}\Rightarrow\left(\frac{x}{y}\right)^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

Vậy \(\frac{x}{yz}:\frac{y}{zx}=\frac{1}{4}\)

5 tháng 2 2017

1/4 nha bạn

22 tháng 1 2017

y/x=1/2=>x^2/y^2=4

11 tháng 3 2020

Ta có : \(A=\frac{2019}{x+xy+1}+\frac{2019}{y+yz+1}+\frac{2019}{z+zx+1}=2019\left(\frac{1}{x+xy+1}+\frac{1}{y+yz+1}+\frac{1}{z+zx+1}\right)\)

\(=2019\left(\frac{z}{xz+xyz+z}+\frac{xz}{xyz+xyz^2+xz}+\frac{1}{z+zx+1}\right)\)

\(=2019\left(\frac{z}{xz+z+1}+\frac{xz}{1+z+xz}+\frac{1}{z+zx+1}\right)\)(vì xyz = 1)

\(=2019\left(\frac{z+xz+1}{xz+z+1}\right)=2019\)

Vậy A = 2019

26 tháng 8 2018

với x=y=z khác 0 và a,b,c khác nhau là 1 số bất kỳ khác 0 thì (1) thỏa mãn và (2) không thỏa mãn

=> Không thể CM

26 tháng 8 2018

ta có: \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\)

\(\Rightarrow\frac{a}{x^2-yz}=\frac{b}{y^2-zx}=\frac{c}{z^2-xy}\) (*)

\(\Rightarrow\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-zx\right).\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-zx\right).\left(z^2-xy\right)}\)

\(=\frac{a^2-bc}{x^4-3x^2yz+xy^3+xz^3}=\frac{a^2-bc}{x.\left(x^3-3xyz+y^3+z^3\right)}\)

\(\Rightarrow\frac{a^2-bc}{x}=\frac{a^2}{\left(x^2-yz\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

Làm tương tự như trên. ta có:

\(\frac{b^2-ca}{y}=\frac{b^2}{\left(y^2-zx\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

\(\frac{c^2-ab}{z}=\frac{c^2}{\left(z^2-xy\right)^2}.\left(x^3-3xyz+y^3+z^3\right)\)

Từ (*) \(\Rightarrow\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\left(đpcm\right)\)