Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy
\(1+x^3+y^3\ge3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự :
\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\sqrt{\frac{3}{yz}};\frac{\sqrt{1+z^3+x^3}}{xz}\ge\sqrt{\frac{3}{xz}}\)
Cộng theo vế các bất đẳng thức và thu lại ta được :
\(VT\ge\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\ge3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\)
( Cauchy )
Ta có đpcm
Dấu " = " xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Cách khác nè bạn
Xét bđt phụ \(a^3+b^3\ge ab\left(a+b\right)\left(a,b>0\right)\)
Thật vậy\(\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với a,b>0)
Áp dụng ta có \(x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
\(\Leftrightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{xy}\sqrt{x+y+z}}{xy}=\sqrt{\frac{x+y+z}{xy}}\)
T tự ta có:\(VT\ge\sqrt{x+y+z}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}+\frac{1}{xy}\right)=\sqrt{x+y+z}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge\sqrt{3\sqrt[3]{xyz}}.3\sqrt[3]{\sqrt{xyz}}=3\sqrt{3}\left(xyz=1\left(gt\right)\right)\)
Áp dụng BĐT AM - GM :
\(\sqrt{x}+\sqrt{x}+x^2\ge3\sqrt[3]{x^3}=3x\)
\(\sqrt{y}+\sqrt{y}+y^2\ge3y\)
\(\sqrt{z}+\sqrt{z}+z^2\ge3z\)
Cộng theo vế :
\(2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+x^2+y^2+z^2\ge3\left(x+y+z\right)=\left(x+y+z\right)^2\)
\(\Leftrightarrow2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\ge xy+yz+xz\)
Ta có đpcm
Dấu " = " xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
Thay giá trị x = y = z vô thì thấy VT > 2 nên nghi ngờ đề sai. B xem lại
ÁP dụng BĐT Bu nhi a cốp xki với ba số ta đc :
\(\left(1.\text{ }\sqrt{x+y}+1\sqrt{y+z}+1.\sqrt{x+z}\right)^2\le\left(1+1+1\right)\left(\left(\sqrt{x+y}\right)^2+\left(\sqrt{y+z}\right)^2+\left(\sqrt{z+x}\right)^2\right)\)
\(\le3\left(x+y+y+z+x+z\right)=3.2.\left(x+y+z\right)=6\)
=> \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\le\sqrt{6}\) ( ĐPCM)
Ta có A=\(\frac{x^2}{x\sqrt{y}}+\frac{y^2}{y\sqrt{z}}+\frac{z^2}{z\sqrt{x}}\ge\frac{\left(x+y+z\right)^2}{x\sqrt{y}+y\sqrt{z}+z\sqrt{x}}\)
Áp dụng BĐt bu-nhi-a, ta có
\(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\le\sqrt{\left(x+y+z\right)\left(xy+yz+zx\right)}\le\sqrt{\frac{1}{3}\left(x+y+z\right)^2\left(x+y+z\right)}\)
\(\Rightarrow A\ge\sqrt{\frac{x+y+z}{\frac{1}{3}}}=\sqrt{3\left(x+y+z\right)}\ge\sqrt{9}=3\)
=> A>=3 (ĐPCM)
Dấu = xảy ra <=> x=y=z=1
^^
Câu hỏi của Trần Thành Phát Nguyễn - Toán lớp 9 - Học toán với OnlineMath
\(\sqrt{x^2+\frac{1}{x^2}}=\sqrt{\frac{9}{10}}\cdot\sqrt{\left(x^2+\frac{1}{x^2}\right)\left(\frac{1}{9}+1\right)}\ge\sqrt{\frac{9}{10}}\cdot\left(\frac{x}{3}+\frac{1}{x}\right)\)
Tương tự:\(\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\frac{9}{10}}\left(\frac{y}{3}+\frac{1}{y}\right);\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\frac{9}{10}}\left(\frac{z}{3}+\frac{1}{z}\right)\)
Cộng lại ta có:
\(LHS\ge\sqrt{\frac{9}{10}}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{3}\right)\ge\sqrt{\frac{9}{10}}\left(\frac{9}{x+y+z}+\frac{x+y+z}{3}\right)\)
\(=\sqrt{\frac{9}{10}}\cdot\left(\frac{x+y+z}{3}+\frac{1}{3\left(x+y+z\right)}+\frac{26}{3\left(x+y+z\right)}\right)\)
ai đó giúp em đoạn này với.Em cô si xong thấy không đúng ạ :(
áp dụng bdt cô-si
\(\sqrt{\frac{y+z}{x}\cdot1}\le\left(\frac{y+z}{x}+1\right):2=\frac{x+y+z}{2x}\)
\(\Rightarrow\sqrt{\frac{x}{y+z}}\ge\frac{2x}{x+y+z}\)
bạn chứng minh tương tự ta cx có
\(\sqrt{\frac{y}{x+z}}\ge\frac{2y}{x+y+z};\sqrt{\frac{z}{y+x}}\ge\frac{2z}{x+y+z}\)
cộng từng vế lại vs nhau ta có \(\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\ge\frac{2\left(x+y+z\right)}{x+y+z}=2\)
dấu = xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x=y+z\\y=z+x\\z=x+y\end{cases}}\Rightarrow x+y+z=0\ne gt\)
suy ra đẳng thức ko xảy ra
Đặt cho gọn ha
Đặt \(\hept{\begin{cases}x=a^2\\y=b^2\\z=c^2\end{cases}}\left(a;b;c>0\right)\)
Bài toán trở thành : Cho a;b;c > 0 và \(a^2+b^2+c^2=12\)
\(CMR:a^3+b^3+c^3\ge24\)
Dự đoán dấu "=" khi a = b = c = 2
Ta có : \(a\left(a-2\right)^2\ge0\)
\(\Leftrightarrow a\left(a^2-4a+4\right)\ge0\)
\(\Leftrightarrow a^3-4a^2+4a\ge0\)
\(\Leftrightarrow a^3\ge4a^2-4a\)
Chứng minh tương tự được \(b^3\ge4b^2-4b\)
\(c^3\ge4c^2-4c\)
Cộng hết vô ta được \(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)-4\left(a+b+c\right)\)
\(=4.12+4\left(a+b+c\right)\)
\(=48-4\left(a+b+c\right)\)(1)
Ta có \(\left(a-2\right)^2\ge0\)
\(\Leftrightarrow a^2-4a+4\ge0\)
\(\Leftrightarrow a^2+4\ge4a\)
C/m tương tự \(b^2+4\ge4b\)
\(c^2+4\ge4c\)
Cộng lại được \(a^2+b^2+c^2+12\ge4\left(a+b+c\right)\)
\(\Leftrightarrow12+12\ge4\left(a+b+c\right)\)
\(\Leftrightarrow24\ge4\left(a+b+c\right)\)
\(\Leftrightarrow-4\left(a+b+c\right)\ge-24\)(2)
Từ (1) và (2) \(\Rightarrow a^3+b^3+c^3\ge48-24=24\left(ĐPCM\right)\)
Vậy bài toán được c/m
mình chịu