\(A=\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2015

ÁP dụng BĐT  Bu nhi a cốp xki với ba số ta đc :

 \(\left(1.\text{ }\sqrt{x+y}+1\sqrt{y+z}+1.\sqrt{x+z}\right)^2\le\left(1+1+1\right)\left(\left(\sqrt{x+y}\right)^2+\left(\sqrt{y+z}\right)^2+\left(\sqrt{z+x}\right)^2\right)\)

\(\le3\left(x+y+y+z+x+z\right)=3.2.\left(x+y+z\right)=6\)

=> \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\le\sqrt{6}\) ( ĐPCM) 

8 tháng 9 2018

Với x,y,z>0, áp dụng BĐT Bunhiacopxki

\(\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(1+1+1\right)\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\) 

\(\Leftrightarrow\left(x+y+z\right)2.3\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\) 

\(\Leftrightarrow6\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\) 

\(\Leftrightarrow\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\) (đpcm) 

Dấu "=" khi \(x=y=z=\frac{1}{3}\)

16 tháng 4 2020

Áp dụng bất đẳng thức Cô - si cho các cặp số không âm, ta có:

\(\sqrt{\frac{2}{3}\left(x+y\right)}\le\frac{\frac{2}{3}+x+y}{2}=\frac{2+3x+3y}{6}\)

\(\sqrt{\frac{2}{3}\left(y+z\right)}\le\frac{\frac{2}{3}+y+z}{2}=\frac{2+3y+3z}{6}\)

\(\sqrt{\frac{2}{3}\left(z+x\right)}\le\frac{\frac{2}{3}+z+x}{2}=\frac{2+3z+3x}{6}\)

Cộng từng vế của các bất đẳng thức trên \(\sqrt{\frac{2}{3}}\text{∑}\sqrt{x+y}\le2\)

\(\Rightarrow\text{∑}\sqrt{x+y}\le\sqrt{6}\)

Vậy \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\le\sqrt{6}\)

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)

11 tháng 10 2018

c) theo bunhia ta có:

\(VT^2\le3\left(x+y+y+z+z+x\right)=6\)

\(\Rightarrow VT\le\sqrt{6}\)

13 tháng 10 2018

bạn giải hẳn ra đc k?

10 tháng 10 2016

Áp dụng Bđt \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Ta có:

\(A^2\le6\left(x+y+z\right)=6\)

\(\Leftrightarrow A\le\sqrt{6}\)(Đpcm)

20 tháng 8 2017

1933 -109

29 tháng 3 2019

Đặt cho gọn ha

Đặt \(\hept{\begin{cases}x=a^2\\y=b^2\\z=c^2\end{cases}}\left(a;b;c>0\right)\)

Bài toán trở thành : Cho a;b;c > 0 và \(a^2+b^2+c^2=12\)

                              \(CMR:a^3+b^3+c^3\ge24\)

Dự đoán dấu "=" khi a = b = c = 2 

Ta có : \(a\left(a-2\right)^2\ge0\)

\(\Leftrightarrow a\left(a^2-4a+4\right)\ge0\)

\(\Leftrightarrow a^3-4a^2+4a\ge0\)

\(\Leftrightarrow a^3\ge4a^2-4a\)

Chứng minh tương tự được \(b^3\ge4b^2-4b\)

                                              \(c^3\ge4c^2-4c\)

Cộng hết vô ta được \(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)-4\left(a+b+c\right)\)

                                                              \(=4.12+4\left(a+b+c\right)\)

                                                               \(=48-4\left(a+b+c\right)\)(1)

Ta có  \(\left(a-2\right)^2\ge0\)

\(\Leftrightarrow a^2-4a+4\ge0\)

\(\Leftrightarrow a^2+4\ge4a\)

C/m tương tự \(b^2+4\ge4b\)

                      \(c^2+4\ge4c\)

Cộng lại được \(a^2+b^2+c^2+12\ge4\left(a+b+c\right)\)

               \(\Leftrightarrow12+12\ge4\left(a+b+c\right)\)

               \(\Leftrightarrow24\ge4\left(a+b+c\right)\)

               \(\Leftrightarrow-4\left(a+b+c\right)\ge-24\)(2)

Từ (1) và (2) \(\Rightarrow a^3+b^3+c^3\ge48-24=24\left(ĐPCM\right)\)

Vậy bài toán được c/m

29 tháng 3 2019

mình chịu