K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

f(x,y,z) =\(\left(x^2+9z^2-6xz\right)+\left(y^2+4z^2-4yz\right)+\left(x^2-6x+9\right)\)

\(f\left(x,y,z\right)=\left(x-3z\right)^2+\left(y-2z\right)^2+\left(x-3\right)^2\)

\(f\left(x,y,z\right)\ge0\forall x,y,z\in R\)

\(f\left(x,y,z\right)=0\Rightarrow\left\{{}\begin{matrix}x-3=0\\x-3z=0\\y-2z=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=3z\\y=2z\end{matrix}\right.\\xy=6z^2\\x^2=9z^2\\y^2=4z^2\end{matrix}\right.\)

\(A=\dfrac{2xy+xz-x^2-2y^2-yz}{x^2-y^2}=\dfrac{12z^2+3z^2-9z^2-8z^2-2z^2}{9z^2-4z^2}=\dfrac{-4z^2}{5z^2}=-\dfrac{4}{5}\)

19 tháng 3 2017

\(2x^2+y^2+13z^2-4yz-6x+9=0\)

\(\Leftrightarrow\left(2x^2-6x+\dfrac{9}{2}\right)+\left(y^2-4yz+4z^2\right)+9z^2+\dfrac{9}{2}=0\)

\(\Leftrightarrow2\left(x^2-3x-\dfrac{9}{4}\right)+\left(y-2z\right)^2+9z^2+\dfrac{9}{2}=0\)

\(\Leftrightarrow2\left(x-\dfrac{3}{2}\right)^2+\left(y-2z\right)^2+9z^2+\dfrac{9}{2}=0\)

Dễ thấy: \(2\left(x-\dfrac{3}{2}\right)^2+\left(y-2z\right)^2+9z^2\ge0\forall x,y,z\)

\(\Rightarrow2\left(x-\dfrac{3}{2}\right)^2+\left(y-2z\right)^2+9z^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x,y,z\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}2\left(x-\dfrac{3}{2}\right)^2=0\\\left(y-2z\right)^2=0\\9z^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{3}{2}=0\\y=2z\\z=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=0\\z=0\end{matrix}\right.\)

Khi đó \(P=\dfrac{2\cdot\dfrac{3}{2}\cdot0+\dfrac{3}{2}\cdot0-\left(\dfrac{3}{2}\right)^2-2\cdot0^2-0\cdot0}{\left(\dfrac{3}{2}\right)^2-0^2}=-1\)

19 tháng 3 2017

Đệch, theo đề bài của bn thì Thắng làm đúng òi

Hình như đề thiếu -6xz mới ra -4/5

21 tháng 10 2016

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0+0+0\)

\(\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)

\(\left(x+1\right)^2\ge0\)

\(\left(y+1\right)^2\ge0\)

\(\left(z+1\right)^2\ge0\)

\(\Rightarrow x+1=y+1=z+1=0\)

\(\Rightarrow x=y=z=-1\)

\(\Rightarrow P=1+1+1=3\)

22 tháng 1 2019

Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)\(\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\left\{{}\begin{matrix}xy=-yz-xz\\yz=-xy-xz\\xz=-xy-xz\end{matrix}\right.\)

\(\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-xz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)

Tương tự:

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}\\\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-y\right)\left(x-z\right)}\\\dfrac{yz}{x^2+2yz}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{xz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xy}{\left(x-y\right)\left(x-z\right)}+\dfrac{yz}{\left(x-y\right)\left(x-z\right)}=\dfrac{xz+xy+yz}{\left(x-y\right)\left(x-z\right)}=\dfrac{0}{\left(x-y\right)\left(x-z\right)}=0\)

Vậy \(A=0.\)

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Lời giải:

Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow \frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)

Suy ra \(yz=-xy-xz\)

\(\Rightarrow x^2+2yz=x^2+yz-xy-xz=x(x-y)-z(x-y)\)

\(\Leftrightarrow x^2+2yz=(x-z)(x-y)\)

\(\Rightarrow \frac{yz}{x^2+2yz}=\frac{yz}{(x-z)(x-y)}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(A=\frac{yz}{(x-y)(x-z)}+\frac{xz}{(y-x)(y-z)}+\frac{xy}{(z-x)(z-y)}\)

\(A=\frac{-yz(y-z)}{(x-y)(y-z)(z-x)}+\frac{-xz(z-x)}{(x-y)(y-z)(z-x)}+\frac{-xy(x-y)}{x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{(x-y)(y-z)(z-x)}\)

\(A=\frac{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}{xy^2+yz^2+zx^2-(x^2y+y^2z+z^2x)}=1\)

20 tháng 3 2017

1)

\(A=\left(x-y+1\right)^2+\left(y-2\right)^2+5\ge5\)

GTNN A=5 khi y=2 và x=1

2)

\(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

\(A=\dfrac{x^3+y^3+z^3}{xyz}=\dfrac{3xyz}{xyz}=3\)