Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x,y€0;1]
(x-1)(y-1)≥0
xy-(x+y)+1≥0
3xy-3(x+y)+3≥0:; -2(x+y)+3≥0
(x+y)≤3/2
x+y=3xy=>9(xy)^2-4(xy)≥0=> xy≥4/9
=>(x+y)€[4/3;3/2]
P=x^2+y^2-4xy=(x+y)^2-6xy=(x+y)^2-2(x+y)=[(x+y-1]^2-1
Pmin=(4/3-1)^2-1=1/9-1=-8/9
khi x+y=4 /3; xy=4/9
x=y=2/3
Pmax=(3/2-1)^2-1=1/4-1=-3/4
khi x or y =1
(x,y)=(1,1/2);(1/2;1)
\(P=x^2+y^2-4xy\)
\(P=\left(x+y\right)^2-2xy-4xy\)
\(P=\left(3xy\right)^2-6xy\)
\(P=\left(3xy\right)^2-2.3xy.1+1-1\)
\(P=\left(3xy-1\right)^2-1\ge-1\)
dấu \("="\) xảy ra \(\Leftrightarrow3xy-1=0\Leftrightarrow xy=\dfrac{1}{3}\)
vậy MIN \(P=-1\Leftrightarrow xy=\dfrac{1}{3}\)
a) Dễ quá nên hơi chán để ghi đầy đủ :V Ta có:
\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
Suy ra:....
b) \(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\)
Áp dụng bất đẳng thức: x2 + a2y2 \(\ge\)2axy, ta có:
\(\frac{1+\sqrt{5}}{2}\left(xy+yz+zx\right)\le\frac{\frac{1+\sqrt{5}}{2}\left(x^2+y^2\right)+\left[y^2+\left(\frac{1+\sqrt{5}}{2}\right)^2x^2\right]+\left[\left(\frac{1+\sqrt{5}}{2}\right)^2z^2+x^2\right]}{2}\)=
\(\frac{\left(\frac{1+\sqrt{5}}{2}+1\right)\left(x^2+y^2\right)+2\left(\frac{1+\sqrt{5}}{2}\right)^2z^2}{2}\)
\(\Rightarrow\left(1+\sqrt{5}\right)\le\frac{3+\sqrt{5}}{2}\left(x^2+y^2\right)+\left(3+\sqrt{5}\right)z^2\)\(\Rightarrow x^2+y^2-2z^2\ge\sqrt{5}-1\)\(\Rightarrow P\ge\sqrt{5}-1\)
Vậy GTNN của P là \(\sqrt{5}-1\)khi \(x=y=\frac{1+\sqrt{5}}{2}z.\)