\(x^2+y^2+z^2=4\sqrt{xyz}\)   Chứng minh rằng 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2019

ta có \(\sum\) \(a+\frac{9}{16}a^2\ge\frac{3}{2}\sqrt{a^3}\)

\(\Rightarrow\)\(\sum\) \(a\ge\frac{3}{2}\sqrt{a^3}-\frac{9}{16}a^2\)\(\Rightarrow a+b+c\ge\frac{3}{2}(\sqrt{a^3}+\sqrt{b^3}+\sqrt{c^3})-\frac{9}{16}(a^2+b^2+c^2)\ge\frac{9}{2}\sqrt{abc}-\frac{9}{16}.4\sqrt{abc}\)>\(2\sqrt{abc}\) theo bđt côsi 

ĐPCM 

có thể cảm ơn tôi tại đây https://diendantoanhoc.net/members/

<=>27xyz=27(x+y+z)+54

\(\Rightarrow\left(x+y+z\right)^3\ge27\left(x+y+z\right)+54\Rightarrow x+y+z\le6\)

\(4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le12\left(x+y+z\right)=9\left(x+y+z\right)+3\left(x+y+z\right)\le9\left(x+y+z\right)+18=9\left(x+y+z+2\right)\)

\(\Rightarrow4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le9xyz\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le\frac{3}{2}\sqrt{xyz}\left(Q.E.D\right)\)

29 tháng 9 2017

Từ giả thiết ta đặt ra: \(x+y+z=xyz\Rightarrow xy+yz+zx\ge\sqrt{3}a+b+c\ge9\) * 

Ta lại có: \(x^2+5\ge5\sqrt{xyz}\)theo BĐT Cauchy 

Từ đó BĐT \(\Leftrightarrow x^2+y^2+z^2+27\le4xy+yz+zx\Leftrightarrow a+b+c+27\le6\)

Đặt: \(\hept{\begin{cases}p=x+y+z\\q=xy+yz+zx\\r=xyz\end{cases}}\)

Thì ta có: \(p=r\)và cần chứng minh 

\(6q\ge p^2+27\Leftrightarrow6pr\ge p^3+27p\)

Theo BĐT Schur thì: \(r\ge\frac{4pq-p^3}{9}\)

Do đó: \(BĐT\Leftrightarrow\frac{8}{3}q^2\ge\frac{3}{2}p^2+27\)

BĐT cuối cùng đúng theo Đk *

P/s: Tham khảo nhé

9 tháng 12 2020

Ta có: \(x+y+z=xyz\Rightarrow x=\frac{x+y+z}{yz}\Rightarrow x^2=\frac{x^2+xy+xz}{yz}\Rightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\sqrt{x^2+1}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{yz}}\le\frac{\frac{x+y}{y}+\frac{x+z}{z}}{2}=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}\le\frac{2+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.\frac{xy+yz+zx}{xyz}\)\(\le3.\frac{\frac{\left(x+y+z\right)^2}{3}}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}=\frac{\left(xyz\right)^2}{xyz}=xyz\)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)

2 tháng 4 2021

Đặt \(A=\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)

Ta có:

\(x^2+xy+yz+zx=x+xyz=x\left(x+yz\right)\)

\(\Rightarrow\frac{x\left(x+yz\right)}{x}=\frac{x^2+xy+yz+zx}{x}\)

\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+zx}{x}=\frac{\left(x^2+xy\right)+\left(yz+zx\right)}{x}=\frac{\left(x+z\right)\left(x+y\right)}{x}\)

\(\Rightarrow\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)

Vì x, y, z >0 nên áp dụng bất đẳng thức Bunhiacopxki cho 2 số dương, ta được:

\(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{x^2}.+\sqrt{yz}\right)^2\)

\(\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)

\(\Rightarrow\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\)

Do đó \(\sqrt{x+yz}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\left(1\right)\)

Chứng minh tương tự, ta được:

\(\sqrt{y+xz}\ge\frac{y+\sqrt{xz}}{\sqrt{y}}\left(2\right)\)

Chứng minh tương tự, ta được:

\(\sqrt{z+xy}\ge\frac{z+\sqrt{xy}}{\sqrt{z}}\left(3\right)\)

Từ (1), (2) và (3), ta được:

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)\(\ge\frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{zx}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}\)

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{yz+zx+xy}{\sqrt{xyz}}\)

 \(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}\)(vì \(xy+yz+zx=xyz\))

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\)(điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\xy+yz+zx=xyz\end{cases}}\Leftrightarrow x=y=z=3\)

Vậy với x, y, z là các số thực dương thỏa mãn xy + yz + zx =xyz thì:

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\).

\(\)

Á nhầm nhaaa cái cuối cùng là cộng z2 đó

1 tháng 11 2019

Ta có :

\(\frac{1+\sqrt{1+x^2}}{x}=\frac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\frac{2+\frac{4+1+x^2}{2}}{2x}=\frac{9+x^2}{4x}\)

tương tự : \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{9+y^2}{4y}\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{9+z^2}{4z}\)

\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le\frac{\left(9+x^2\right)yz+\left(9+y^2\right)xz+\left(9+z^2\right)xy}{4xyz}\)

\(=\frac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\frac{9\frac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=\frac{4\left(xyz\right)^2}{4xyz}=xyz\)

Dấu " = " xảy ra khi x = y = z = \(\sqrt{3}\)

13 tháng 11 2019

bài này mình nhớ làm khá nhiều ở cả olm và học 24 rồi. Mà chắc nó ko hiện câu hỏi tương tự  nên làm lại 

\(\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\). Khi đó cần cm \(\frac{2a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{9}{4}\) với ab+bc+ca=1

\(VT=\)\(\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(a+b\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\frac{2a}{a+b}\cdot\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}\cdot\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}\cdot\frac{c}{2\left(b+c\right)}}\)

\(\le\frac{\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}}{2}=\frac{9}{4}\)

13 tháng 11 2019

Đổi ẩn là ra ah.

\(\left(x,y,z\right)=\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)\)

6 tháng 5 2016

x=y=z=1

30 tháng 8 2017

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{3\sqrt[3]{xyz}.3}{\sqrt[3]{xyz}}=9.\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{xy+yz+xz}{xyz}\right)\ge9\Leftrightarrow xy+yz+xz\ge\frac{9xyz}{x+y+z}\)

lại có \(x+y+z=\sqrt{xyz}\Leftrightarrow\left(x+y+z\right)^2=xyz\)

=> đpcm

29 tháng 8 2017

ai làm dc đều là thánh