K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HP
2 tháng 10 2016
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=\left(x+y+z\right).\frac{1}{2}\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2>0\) với mọi x,y,z (đpcm)
-Đây là HĐT quen thuộc,bạn có thể lên gg tìm cách CM
LM
0
2 tháng 1 2017
Quy đồng thì phần mẫu số là bình phương của số hữu tỉ rồi.
Còn phần tử biến đổi như sau:
\(\left(x-y\right)^2\left(y-z\right)^2+...=\left[\left(x-y\right)\left(y-z\right)+...\right]^2\)
Đây vẫn là bình phương của số hữu tỉ. Xong!
PS
3