Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{x}{y}< \frac{x+m}{y+m}\)khi 0<x<y,m>0
Áp dụng ta được
\(\frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)
\(\frac{b+c}{b+c+d}< \frac{a+b+c}{a+b+c+d}\)
....................................................
Khi đó
\(VT< \frac{a+b+d+a+b+c+c+d+b+d+a+c}{a+b+c+d}=3\)
Vậy VT<3
Quy đồng thì phần mẫu số là bình phương của số hữu tỉ rồi.
Còn phần tử biến đổi như sau:
\(\left(x-y\right)^2\left(y-z\right)^2+...=\left[\left(x-y\right)\left(y-z\right)+...\right]^2\)
Đây vẫn là bình phương của số hữu tỉ. Xong!
(x-2y)^2/xy=8/3
=>3(x-2y)^2=8xy
=>3(x^2-4xy+4y^2)=8xy
=>3x^2-12xy+12y^2-8xy=0
=>3x^2-20xy+12y^2=0
=>3x^2-18xy-2xy+12y^2=0
=>3x(x-6y)-2y(x-6y)=0
=>(x-6y)(3x-2y)=0
=>x=6y hoặc 3x=2y
=>x/y=6/1 hoặc x/y=2/3
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=\left(x+y+z\right).\frac{1}{2}\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2>0\) với mọi x,y,z (đpcm)
-Đây là HĐT quen thuộc,bạn có thể lên gg tìm cách CM