Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
UvU à nhầm u;v;w chứ @@
\(\left(x+y+z;xy+zx+yz;xyz\right)->\left(3u;3v^2;w^3\right)\)
ta can cm\(w\le\dfrac{u}{\sqrt[3]{2}}\) voi \(9u^2=12v^2\)
notethat: dieu kien da cho ko co \(w\) nen ta co the k,dinh rang co the tim dc gia tri lon nhat cua \(w^3\), xay ra khi 2 bien bang nhau. WLOg x=y
\(gt->z\left(z-4x\right)=0\)
+)z=0 bdt luon dung
+)z=4x ta cco bdt can cm \(5x+y\ge3\sqrt[3]{8x^2y}\)
\(\Leftrightarrow\left(5x+y\right)^3-\left(6\sqrt[3]{x^2y}\right)^3\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(125x^2-16xy-y^2\right)\ge0\)
\(\Leftrightarrow0\ge0\)
True af
coi \(x^2+y^2+z^2=2xy+2yz+2xz\) la pt bac 2 an \(z\)
(delta,nhan chia cac thu....)
\(\left[{}\begin{matrix}z=x+y+2\sqrt{xy}\\z=x+y-2\sqrt{xy}\end{matrix}\right.\)
+)\(z=x+y-2\sqrt{xy}\). ta cần cm \(2\left(x+y-\sqrt{xy}\right)\ge3\sqrt[3]{2xy\left(x+y-2\sqrt{xy}\right)}\)
\(\left(\sqrt{x};\sqrt{y}\right)->\left(a;b\right)\) (cho gọn)
\(\left(2\left(a^2+b^2-ab\right)\right)^3-\left(3\sqrt[3]{2a^2b^2\left(a^2+b^2-2ab\right)}\right)^3\ge0\)
\(\Leftrightarrow2\left(a+b\right)^2\left(2a-b\right)^2\left(a-2b\right)^2\ge0\)
+)\(z=x+y+2\sqrt{xy}\) cũng cần cm
\(2\left(x+y+\sqrt{xy}\right)\ge3\sqrt[3]{2xy\left(x+y+2\sqrt{xy}\right)}\)
\(\left(\sqrt{x};\sqrt{y}\right)->\left(a;b\right)\)
\(\left(2\left(a^2+b^2+ab\right)\right)^3-\left(3\sqrt[3]{2a^2b^2\left(a^2+b^2+2ab\right)}\right)^3\ge0\)
\(\Leftrightarrow2\left(a-b\right)^2\left(2a+b\right)^2\left(a+2b\right)^2\ge0\)
1, P=( b2+c2-a2)-4b2c2
= (b2+c2-a2-2bc)(b2+c2-a2+2bc)
= (b-c-a)(a+b+c)(b+c+a)(b+c-a)
Vì a,b,c là 3 cạnh của 1 tam giác nên ta có:
b-c-a<0, a+b+c>0, b+c+a>0,b+c-a>0
=> P <0 (đpcm)
2, x2+y2+z2=1
Suy ra : 0 <= x2<=1, tương tự như vậy vs y và z( <= là nhỏ hơn hoặc bằng)
Xét x2+y2+z2-\(x^3\)-\(y^3\)-\(z^3\)=0
=>x2(1-x)+y2(1-y)+z2(1-z)=0(*)
có x2 >=0,y2>=0, z2>=0 vs mọi x, y,z (**) (>= là lớn hơn hoặc bằng)
Lại có:
x<=1, y<=1,z<=1 suy ra : 1-x>=0, 1-y>=0, 1-z>=0 (***)
Từ (**) và (***) suy ra:
x2(1-x)+y2(1-y)+z2(1-z)>=0 vs mọi x,y,z thỏa mãn điều kiện
Nên từ (*) suy ra: x2(1-x)=0, y2(1-y)=0, z2(1-z)=0
Do đó:
trường hợp 1:
x=1 suy ra y=z=0 vì thế xyz=0
y=1 suy ra x=z=0 vì thế xyz=0
z=1 suy ra x=y=0 vì thế xyz=0
Vậy trong mọi trường hợp xyz=0
Bài này x;y;z phải dương chứ nhỉ? Có dấu "=" ở số 0 thế kia thì bối rối quá
Dự đoán dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)
Theo nguyên lý Dirichlet, trong 3 số x;y;z luôn tồn tại 2 số nằm cùng phía so với \(\frac{1}{2}\) ; giả sử đó là x và y
\(\Rightarrow\left(x-\frac{1}{2}\right)\left(y-\frac{1}{2}\right)\ge0\Leftrightarrow\frac{1}{2}\left(x+y\right)-xy\le\frac{1}{4}\)
\(\Leftrightarrow x+y-2xy\le\frac{1}{2}\)
Mặt khác:
\(1=2xyz+x^2+y^2+z^2\ge2xyz+2xy+z^2=2xy\left(1+z\right)+z^2\)
\(\Rightarrow1-z^2\ge2xy\left(1+z\right)\Leftrightarrow\left(1-z\right)\left(1+z\right)\ge2xy\left(1+z\right)\)
\(\Leftrightarrow1-z\ge2xy\Rightarrow xy\le\frac{1-z}{2}\)
\(\Rightarrow P=xy+z\left(x+y-2xy\right)\le\frac{1-z}{2}+\frac{z}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
ta có: \(VT=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}=3+\frac{z^2}{x^2+y^2}+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}\)
Áp dụng bất đẳng thức cauchy: \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}}\)
do đó \(VT\le3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}=\frac{x^3+y^3+z^3}{2xyz}+3=VF\)
đẳng thức xảy ra khi x=y=z
Bài 2. a/ \(1\le a,b,c\le3\) \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\), \(\left(c-1\right).\left(c-3\right)\le0\)
Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)
\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)
Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1
b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\)
Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)
Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay
\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)
Vì x;y;z là 3 cạnh của tam giác
=> \(x+y>z\)
\(\Rightarrow x+y+z>z+z\)
\(\Rightarrow x+y+z>2z\)
\(\Rightarrow2>2z\Rightarrow z< 1\)
Chứng minh tương tự ta được: x < 1 ; y < 1
\(\Rightarrow1-x>0;1-y>0;1-z>0\)
\(\Rightarrow\left(1-x\right)\left(1-y\right)\left(1-z\right)>0\)
\(\Rightarrow\left(1-y-x+xy\right)\left(1-z\right)>0\)
\(\Rightarrow1-y-x+xy-z+yz+xz-xyz>0\)
\(\Rightarrow1-\left(x+y+z\right)+xy+yz+xz-xyz>0\)
\(\Rightarrow1-2+xy+yz+xz-xyz>0\)
\(\Rightarrow-1+xy+yz+xz-xyz>0\)
\(\Rightarrow2\left(-1+xy+yz+xz-xyz\right)>0\)
\(\Rightarrow-2+2xy+2yz+2xz-2xyz>0\)
\(\Rightarrow-\left(2-2xy-2yz-2xz+2xyz\right)>0\)
\(\Rightarrow2-2xy-2yz-2xz+2xyz< 0\)
\(\Rightarrow4-2xy-2yz-2xz+2xyz< 2\)
\(\Rightarrow\left(x+y+z\right)^2-2xy-2yz-2xz+2xyz< 2\) (Vì x+y+z = 2 => (x+y+z)2 = 22 = 4)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz-2xy-2yz-2xz+2xyz< 2\)
\(\Rightarrow x^2+y^2+z^2+2xyz< 2\)
=> đpcm