Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 28
\(P=\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
=>\(P=\frac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-c-b\right)\left(a-c+b\right)}\)
=>\(P=1\)
Bài 30 phải là xy+y+x=3.
Ta có: xy+y+x=3 => (x+1)(y+1)=4(1)
yz+y+z=8 => (y+1)(z+1)=9(2)
zx+x+z=15 => (x+1)(z+1)=16(3)
Nhân (1), (2) và (3) theo vế, ta có:
[(x+1)(y+1)(z+1)]2=576
=> (x+1)(y+1)(z+1)=24(I) hoặc (x+1)(y+1)(z+1)=-24(II)
Lần lượt thay (1),(2),(3) vào (I),(II), tính x,y,z.
Kết quả: P=43/6 hoặc P=-79/6
Bài 32:
a) P= \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(1+\sqrt{2}\)
b) Có: \(x^2-2y^2=xy\)
\(\Leftrightarrow x^2-y^2-y^2-xy=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x-2y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=2y\end{cases}}}\)
Thay x=-y ta có: Q=\(\frac{-y-y}{-y+y}\)=\(\frac{-2y}{0}\)(loại )
Thay x=2y ta có : Q=\(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)
1, P=( b2+c2-a2)-4b2c2
= (b2+c2-a2-2bc)(b2+c2-a2+2bc)
= (b-c-a)(a+b+c)(b+c+a)(b+c-a)
Vì a,b,c là 3 cạnh của 1 tam giác nên ta có:
b-c-a<0, a+b+c>0, b+c+a>0,b+c-a>0
=> P <0 (đpcm)
2, x2+y2+z2=1
Suy ra : 0 <= x2<=1, tương tự như vậy vs y và z( <= là nhỏ hơn hoặc bằng)
Xét x2+y2+z2-\(x^3\)-\(y^3\)-\(z^3\)=0
=>x2(1-x)+y2(1-y)+z2(1-z)=0(*)
có x2 >=0,y2>=0, z2>=0 vs mọi x, y,z (**) (>= là lớn hơn hoặc bằng)
Lại có:
x<=1, y<=1,z<=1 suy ra : 1-x>=0, 1-y>=0, 1-z>=0 (***)
Từ (**) và (***) suy ra:
x2(1-x)+y2(1-y)+z2(1-z)>=0 vs mọi x,y,z thỏa mãn điều kiện
Nên từ (*) suy ra: x2(1-x)=0, y2(1-y)=0, z2(1-z)=0
Do đó:
trường hợp 1:
x=1 suy ra y=z=0 vì thế xyz=0
y=1 suy ra x=z=0 vì thế xyz=0
z=1 suy ra x=y=0 vì thế xyz=0
Vậy trong mọi trường hợp xyz=0