Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ đã cho tương đương với :
\(\hept{\begin{cases}xy+x+y+1=4\\yz+y+z+1=9\\xz+x+z+1=16\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=4\\\left(y+1\right)\left(z+1\right)=9\\\left(z+1\right)\left(x+1\right)=16\end{cases}}\)
Nhân các phương trình theo vế : \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=24^2\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=24\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-24\end{cases}}\)
Từ đây thay vào từng phương trinh trên để tìm x,y,z , rồi từ đó suy ra P
Cộng 1 vào 2 vế của 3 pt ta được:
x+xy+y+1=1+1 <=> (x+1)(y+1)=2
y+yz+z+1=3+1 <=> (y+1)(z+1)=4
z+xz+z+1=7+1 <=> (z+1)(x+1)=8
Ta có: (x+1)(y+1)(y+1)(z+1)=(y+1)2 .8=2.4=8 => (y+1)2 =1
(y+1)(z+1)(z+1)(x+1)=(z+1)2 .2=4.8=32 => (z+1)2 =16
(z+1)(x+1)(x+1)(y+1)=(x+1)2 .4=2.8=16 => (x+1)2 =4
Do x;y;z không âm nên x= 1; y= 0; z= 3
=> M = 1 +02 +32 =10
Câu hỏi của Minh Nguyễn Cao - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
1, P=( b2+c2-a2)-4b2c2
= (b2+c2-a2-2bc)(b2+c2-a2+2bc)
= (b-c-a)(a+b+c)(b+c+a)(b+c-a)
Vì a,b,c là 3 cạnh của 1 tam giác nên ta có:
b-c-a<0, a+b+c>0, b+c+a>0,b+c-a>0
=> P <0 (đpcm)
2, x2+y2+z2=1
Suy ra : 0 <= x2<=1, tương tự như vậy vs y và z( <= là nhỏ hơn hoặc bằng)
Xét x2+y2+z2-\(x^3\)-\(y^3\)-\(z^3\)=0
=>x2(1-x)+y2(1-y)+z2(1-z)=0(*)
có x2 >=0,y2>=0, z2>=0 vs mọi x, y,z (**) (>= là lớn hơn hoặc bằng)
Lại có:
x<=1, y<=1,z<=1 suy ra : 1-x>=0, 1-y>=0, 1-z>=0 (***)
Từ (**) và (***) suy ra:
x2(1-x)+y2(1-y)+z2(1-z)>=0 vs mọi x,y,z thỏa mãn điều kiện
Nên từ (*) suy ra: x2(1-x)=0, y2(1-y)=0, z2(1-z)=0
Do đó:
trường hợp 1:
x=1 suy ra y=z=0 vì thế xyz=0
y=1 suy ra x=z=0 vì thế xyz=0
z=1 suy ra x=y=0 vì thế xyz=0
Vậy trong mọi trường hợp xyz=0
Không mất tính tổng quát.
g/s : \(x\ge y\ge z\)\(\ge1\)
Theo bài ra ta có: \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)⋮xyz\)
=> \(\left(xy^2z+yz+xy+1\right)\left(zx+1\right)⋮xyz\)
=> tồn tại số nguyên dương k sao cho: \(xy+yz+zx+1=k.xyz\)
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=k\)
=> \(k\le1+1+1+1=4\)(1)
TH1: k = 4 khi đó dấu "=" của bất đẳng thức (1) xảy ra khi và chỉ khi x=y=z=1 ( tm)
TH2: k=3
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=3\)
=>\(3\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z^3}\)
=> \(3\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\)
=> \(2\le\frac{1}{y}+\frac{1}{y}+\frac{1}{y^2}=\frac{2}{y}+\frac{1}{y^2}\)=> y=1
Với z=1; y=1 => \(\frac{1}{x}+\frac{1}{x}=1\Rightarrow x=2\)
Vậy x=2, y=z=1 ( thử vào thỏa mãn)
TH3: k=2
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{zyx}=2\)
=> \(2\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\)
=> \(1\le\frac{2}{y}+\frac{1}{y^2}\)=> y=2 hoặc y=1
Với y=1 => \(\frac{1}{x}+\frac{1}{x}=0\left(loai\right)\)
Với y=2 => \(\frac{1}{x}+\frac{1}{2x}=\frac{1}{2}\Rightarrow x=3\)
Vậy x=3; y=2; z=1 ( thử vào thỏa mãn)
TH4: K=1
=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=1\)
=> \(1\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 hoặc z=2 hoặc z=3
Với z=1 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=0\)loại
Với \(z=2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)
=> \(\frac{1}{2}\le\frac{2}{y}+\frac{1}{2y^2}\)=> y=1 (loại), y=2 (loại ); y=3 => x=7 ; y=4 => x= 9/2(loại); y>5 loại
Với z =3 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3}+\frac{1}{3xy}=1\)=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3xy}=\frac{2}{3}\)
=> \(\frac{2}{3}\le\frac{2}{y}+\frac{1}{3y^2}\)=> y=1 ( loại ), y=2 => x=7 (tm) , y=3 => x=10/3 (loại); y>4 ( loại)
TH này x=7; y=2; z=1 ( thử vào ko thỏa mãn) hoặc x=7; y=3 ; z=1 ( thử vào ko thỏa mãn)
Vậy: (x; y; z) là bộ ba số (1; 1; 1), (3; 2; 1); (2; 1;1 ) và các hoán vị của chúng
Ps: Cầu một cách ngắn gọn hơn! Thanks