K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

\(H=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{\left(1+1+1\right)^2}{3+xy+yz+xz}=\dfrac{9}{3+xy+yz+xz}\)

Mặt khác,theo AM-GM: \(xy+yz+xz\le x^2+y^2+z^2=3\)

\(\Rightarrow\dfrac{9}{3+xy+yz+xz}\ge\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu "=" khi: \(x=y=z=1\)

21 tháng 1 2019

Ta có:

\(xy+yz+zx=\frac{\left(x+y+z\right)^2-x^2-y^2-z^2}{2}=\frac{7^2-23}{2}=13\)

Ta lại có:

\(xy+z-6=xy+z+1-x-y-z=\left(x-1\right)\left(y-1\right)\)

\(\Rightarrow A=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}\)

\(=\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}=-1\)

AH
Akai Haruma
Giáo viên
20 tháng 2 2019

Lời giải:

Cách 1:

Áp dụng BĐT S.Vacxo ta có:

\(\frac{1}{xy+1}+\frac{1}{1+yz}+\frac{1}{1+xz}\geq \frac{9}{1+xy+1+yz+1+xz}=\frac{9}{3+xy+yz+xz}(1)\)

Theo BĐT Cauchy ta có bổ đề quen thuộc:

\(xy+yz+xz\leq x^2+y^2+z^2\leq 3(2)\)

Từ \((1);(2)\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9}{3+xy+yz+xz}\geq \frac{9}{3+3}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\Leftrightarrow x=y=z=1\)

Cách 2:

Áp dụng BĐT Cauchy cho các số dương:

\(\frac{1}{xy+1}+\frac{xy+1}{4}\geq 2.\sqrt{\frac{1}{xy+1}.\frac{xy+1}{4}}=1\)

\(\frac{1}{yz+1}+\frac{yz+1}{4}\geq 2.\sqrt{\frac{1}{yz+1}.\frac{yz+1}{4}}=1\)

\(\frac{1}{xz+1}+\frac{xz+1}{4}\geq 2.\sqrt{\frac{1}{xz+1}.\frac{xz+1}{4}}=1\)

Cộng tất cả các BĐT trên theo vế và rút gọn:

\(\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9-(xy+yz+xz)}{4}\geq \frac{9-3}{4}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\)

8 tháng 3 2017

2)

Theo hệ quả của bất đẳng thức Cauchy ta có

\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

Do \(x^2+y^2+z^2\le3\)

\(\Rightarrow3\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow1\ge xy+yz+xz\)

\(\Rightarrow4\ge xy+yz+xz+3\)

\(\Rightarrow\dfrac{9}{4}\le\dfrac{9}{3+xy+xz+yz}\) ( 1 )

Ta có \(C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{3+xy+yz+xz}\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow C=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{9}{4}\)

Vậy \(C_{min}=\dfrac{9}{4}\)

Dấu " = " xảy ra khi \(x=y=z=\sqrt{\dfrac{1}{3}}\)

8 tháng 3 2017

Mấy dạng này mik ngu nhất luôn bạn ạ~~

18 tháng 1 2021

\(x+y+z=7\Rightarrow z=7-x-y\Rightarrow xy+z-6=xy+7-x-y-6=xy-x-y+1\)

\(=\left(x-1\right)\left(y-1\right)\)

Tương tự: \(yz+x-6=\left(y-1\right)\left(z-1\right);zx+y-6=\left(z-1\right)\left(x-1\right)\)

Viết lại: \(H=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}\)

\(=\frac{x-1+y-1+z-1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{x+y+z-3}{xyz-\left(xy+yz+zx\right)+x+y+z-1}\)

\(=\frac{7-3}{3-13+7-1}=-1\)(Từ gt tính được \(xy+yz+zx=13\))

18 tháng 1 2021

Ta có :

\(xy+yz+zx\)\(\frac{\left(x+y+z\right)^2-x^2-y^2-z^2}{2}\)\(\frac{7^2-23}{2}\)\(13\)

Ta lại có :

\(xy+z-6=xy+z+1-x-y-z\)\(\left(x-1\right)\left(y-1\right)\)

\(\Rightarrow A=\)\(\frac{1}{\left(x-1\right)\left(y-1\right)}\)\(+\)\(\frac{1}{\left(y-1\right)\left(z-1\right)}\)\(+\)\(\frac{1}{\left(z-1\right)\left(x-1\right)}\)

\(=\)\(\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}\)

\(=-1\)

27 tháng 4 2018

Áp dụng BĐT :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ≥ 9

Trong đó : a = xy ; b = yz ; c = xz

⇒ ( xy + yz + xz )\(\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\) ≥ 9 ( * )

Áp dụng BĐT cô - si :

x2 + y2 ≥ 2xy ( x > 0 ; y > 0) ( 1 )

y2 + z2 ≥ 2yz ( y > 0 ; z > 0 ) ( 2)

z2 + x2 ≥ 2xz ( z >0 ; x > 0) ( 3)

Cộng từng vế của ( 1 ; 2 ; 3) ⇒ x2 + y2 + z2 ≥ xy + yz + xz ( **)

Từ ( * ; **)

⇒(x2 + y2 + z2).A ≥ ( xy + yz + xz). A ≥ 9

⇒ 3A ≥ 9

⇒ A ≥ 3

⇒ AMIN = 3 ⇔ x = y = z

27 tháng 4 2018

thanks nha