Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(x+y=1\Rightarrow x=1-y\)
\(\Rightarrow x^2+y^2=\left(1-y\right)^2+y^2=2y^2-2y+1=2\left(y^2-y+\dfrac{1}{2}\right)=2\left(y^2-2y\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Vậy \(A_{Min}=\dfrac{1}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)
2.
Ta có:
\(B=\dfrac{1}{x^2y^2}-\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{x^2y^2}-\dfrac{y^2}{x^2y^2}-\dfrac{x^2}{x^2y^2}=\dfrac{1-\left(x^2+y^2\right)}{x^2y^2}\le\dfrac{1-\dfrac{1}{2}}{\dfrac{1}{4}\cdot\dfrac{1}{4}}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{8}}=\dfrac{1}{4}\)
Vậy \(B_{Max}=\dfrac{1}{4}\Leftrightarrow x=y=\dfrac{1}{2}\)
Tui chỉ làm bừa thui nha. K chắc lắm. Thử lại đi
\(P=\frac{1}{x}+\frac{1}{y}+xy^2+x^2y=\left(\frac{1}{16x}+xy^2\right)+\left(\frac{1}{16y}+x^2y\right)+\frac{15}{16}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge\frac{y}{2}+\frac{x}{2}+\frac{15}{16}.\frac{4}{x+y}\)
\(=\left(\frac{x+y}{2}+\frac{1}{2\left(x+y\right)}\right)+\frac{13}{4\left(x+y\right)}\)
\(\ge1+\frac{13}{4}=\frac{17}{4}\)
Dấu "=" xảy ra <=> x = y = 1/2
\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=\frac{x-1}{x}\frac{y-1}{y}\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=\frac{xy-x-y+1}{xy}\left(1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}\right)\)
\(=\frac{-\left(x+y\right)+1}{xy}\left(\frac{xy+x+y+1}{xy}\right)=1+\frac{2}{xy}\)
mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow1+\frac{2}{\frac{1}{4}}=9\)Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)
Câu 1:
\(4x^2+8xy+28x+28y+8y^2+40=0\)
\(\Leftrightarrow\left(2x+2y+7\right)^2+4y^2-9=0\)
\(\Leftrightarrow\left(2x+2y+7\right)^2=9-4y^2\le9\)
\(\Rightarrow-3\le2x+2y+7\le3\)
\(\Leftrightarrow-8\le2y+2y+2\le-2\)
\(\Rightarrow-4\le x+y+1\le-1\)
\(\Rightarrow S_{max}=-1\) khi \(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
\(S_{min}=-4\) khi \(\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)
Câu 2:
\(x^2+y^2=6xy\Rightarrow\frac{x}{y}+\frac{y}{x}=6\)
Đặt \(\frac{x}{y}=a>1\Rightarrow a+\frac{1}{a}=6\Rightarrow a^2-6a+1=0\Rightarrow a=3+2\sqrt{2}\)
\(\Rightarrow P=\frac{x+y}{x-y}=\frac{\frac{x}{y}+1}{\frac{x}{y}-1}=\frac{a+1}{a-1}=\frac{3+2\sqrt{2}+1}{3+2\sqrt{2}-1}=\sqrt{2}\)
\(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{2\left(x+y\right)^2}{4}}=4+2=6\)
Dấu "=" xảy ra tại x=y=1/2
Phần này chug: áp dụng Cauchy có: \(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\left(\frac{a+b}{2}\right)^2=\frac{1}{4}\)
a) \(A=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{1}{xy}\ge\frac{1}{\frac{1}{4}}=4\)
b) Áp dụng BĐT Schwart có: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)
c) đề câu này là \(x+\frac{1}{x}\)hay \(\frac{x+1}{x}\)vậy em?