Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)
Áp dụng BĐT Cosi ta có:
\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\)
Cmtt:
\(\dfrac{y^3}{y\sqrt{1-y^2}}\ge2y^3\)
\(\dfrac{z^3}{z\sqrt{1-z^2}}\ge2z^3\)
\(\Rightarrow\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}+\dfrac{y^3}{y\sqrt{1-y^2}}+\dfrac{z^3}{z\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\) (ĐPCM)
Cho x,y > 0. Tìm GTNN của:
a) x2 + y2 + \(\dfrac{1}{xy}\) với x + y = 2
b) x + y + \(\dfrac{1}{xy}\)
a ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :
\(x^2+y^2+\dfrac{1}{xy}\ge\dfrac{\left(x+y\right)^2}{2}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{2^2}{2}+\dfrac{1}{\dfrac{2^2}{4}}=2+1=3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=1\)
Vậy ...
b ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :
\(x+y+\dfrac{1}{xy}\ge3\sqrt[3]{xy.\dfrac{1}{xy}}=3\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\dfrac{1}{xy}\)
\(\Leftrightarrow x^2y=y^2x=1\)
\(\Leftrightarrow x^3y^3=1\Leftrightarrow xy=1\left(x;y>0\right)\)
\(\Leftrightarrow x=y=1\)
Vậy ...
c: =>3x^2+3y^2=39 và 3x^2-2y^2=-6
=>5y^2=45 và x^2=13-y^2
=>y^2=9 và x^2=4
=>\(\left\{{}\begin{matrix}x\in\left\{2;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{x}=5\\\sqrt{x}-\sqrt{y}=-\dfrac{11}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y}=1+\dfrac{11}{2}=\dfrac{13}{2}\end{matrix}\right.\)
=>x=1 và y=169/4
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4-3=1\\-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9-2=7\end{matrix}\right.\)
=>x+1=11/9 và y+4=-11/19
=>x=2/9 và y=-87/19
Hình như đề có vấn đề đó bạn
theo mình
Có : x+y+z =1
\(\Rightarrow\)\(x^2+y^2+z^2+2xz+2yz+2xy=1\)
\(\Leftrightarrow\)xy+xz+zy =0
Lại có : \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=1\left(1-0\right)=1\)
\(x^3+y^3+z^3=1+3=4\)
\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=4\)
\(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{\left(yz\right)^3+\left(xz\right)^3+\left(xy\right)^3}{x^3y^3z^3}=\left(yz\right)^3+\left(xz\right)^3+\left(xy\right)^3\)
\(=\left(xy+yz+zx\right)\left[\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2-xy^2z-xyz^2-x^2yz\right]+3xy.yz.zx\)
\(=0+3=3\)