Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1+x^2y^2}{xy}}=2\sqrt{\frac{1}{xy}+xy}\)\(=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\ge2\sqrt{\frac{1}{2}+\frac{15}{4\left(x+y\right)^2}}=\sqrt{17}.\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}.\)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
em xin lỗi chớ em mới lớp 6 thui anh Đức ạ
Nếu mà bạn giải Violympic thì có thể làm theo cách này :
Vì vai trò của x,y trong phép tính là như nhau
=> Amin <=> x=y
<=> x2=y2=0,5
<=> x=y=\(\sqrt{0.5}\)
=> Amin= \(2\sqrt{2}\)
P/s: đây là cách mình hay làm nhưng chỉ áp dụng được trên Violympic thoy
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P=\dfrac{1}{x}+\dfrac{2}{y}=\dfrac{1}{x}+\dfrac{4}{2y}=\dfrac{1^2}{x}+\dfrac{2^2}{2y}\)
\(\ge\dfrac{\left(1+2\right)^2}{x+2y}=\dfrac{3^2}{3}=3\)
Đẳng thức xảy ra khi \(x=y=1\)
Áp dụng BĐT AM-GM ta có:
\(\hept{\begin{cases}\sqrt{xy}\le\frac{x+y}{2}\\\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\end{cases}}\). Cộng theo vế ta có:
\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\le\frac{x+y+y+z+x+z}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z\)
Do đó ta có: \(x+y+z\ge1\).Áp dụng BĐT Cauchy-Schwarz dạng Engel ta cũng có:
\(A\ge\frac{\left(x+y+z\right)^2}{x+y+y+z+x+z}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Đặt \(\hept{\begin{cases}a=x-1\\b=y-1\\c=z-1\end{cases}}\)\(-1\le a,b,c\le1\) và \(a+b+c=0\)
\(T=(a+1)^4+(b+1)^4+(c+1)^4-12abc\)
\(=a^4+b^4+c^4+4(a^3+b^3+c^3)+6(a^2+b^2+c^2)+4(a+b+c)+3-12abc\)
Từ \(a+b+c=0\Rightarrow a^3+b^3+c^3=0\). Do đó:
\(T=a^4+b^4+c^4+6(a^2+b^2+c^2)+3\ge3\)
Xảy ra khi \(a=1;b=-1;c=0\)