K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nếu mà bạn giải Violympic thì có thể làm theo cách này :

Vì vai trò của x,y trong phép tính là như nhau

=> Amin <=> x=y

<=> x2=y2=0,5

<=> x=y=\(\sqrt{0.5}\)

=> Amin= \(2\sqrt{2}\)

P/s: đây là cách mình hay làm nhưng chỉ áp dụng được trên Violympic thoy

22 tháng 4 2017

Bài 1 : x = 0 ; y = 2

Bài 2 Max A = 1 <=> x = 0 , y = 1 hoặc x = 1 , y = 0

Min A = 0,5 <=> x = y = 0,5

nếu x;y>(=)0 thì tìm đc max thôi

18 tháng 9 2017

ĐỀ sai rồi bn ơi

neu x ; y > 0 thi ms tim dc max chu

đề sai nha

15 tháng 10 2017

đánh lên mạng ak,nó có đó

15 tháng 2 2018

nói thật bạn trả lời bên dưới nha trả lời vậy trả lời làm cl.Mình đg tìm lời giải rên mạng mà cx phải lập cái nick góp y đó

NV
23 tháng 5 2019

\(I=2+x+\frac{1}{x}+y+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}\)

\(I=2+x+\frac{1}{2x}+y+\frac{1}{2y}+\frac{x}{y}+\frac{y}{x}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(I\ge2+2\sqrt{\frac{x}{2x}}+2\sqrt{\frac{y}{2y}}+2\sqrt{\frac{xy}{xy}}+\frac{1}{2}.\frac{4}{\left(x+y\right)}\)

\(I\ge4+2\sqrt{2}+\frac{2}{x+y}\ge4+2\sqrt{2}+\frac{2}{\sqrt{2\left(x^2+y^2\right)}}=4+3\sqrt{2}\)

\(\Rightarrow I_{min}=4+3\sqrt{2}\) khi \(x=y=\frac{1}{\sqrt{2}}\)