K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

(đã xóa câu trả lời) _by tth

4 tháng 10 2018

\(x+y=5\)

,=>  \(\left(x+y\right)^3=125\)

<=>  \(x^3+y^3+3xy\left(x+y\right)=125\)

<=>  \(x^3+y^3+3.3.5=125\)

<=> \(x^3+y^3=80\)

Vậy...

25 tháng 9 2018

\(a)\)\(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\) ( đề nhầm đúng ko bn ) 

\(M=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2-2xy+y^2\right)\)

\(M=\left(x-y\right)^3-\left(x-y\right)^2\)

\(M=7^3-7^2\)

\(M=294\)

Chúc bạn học tốt ~ 

27 tháng 9 2018

\(1)\)

\(a)\)\(A=5-8x-x^2\)

\(A=-\left(x^2+8x+16\right)+21\)

\(A=-\left(x+4\right)^2+21\le21\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)

\(\Leftrightarrow\)\(x=-4\)

Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)

\(b)\)\(B=5-x^2+2x-4y^2-4y\)

\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)

\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)

\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)

Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

27 tháng 9 2018

\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(............\)

\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(2A=3^{128}-1\)

\(A=\frac{2^{128}-1}{3}\)

Chúc bạn học tốt ~ 

2 tháng 10 2018

mk chịu mấy bài này thui

mk mới lp 6 à xl bn nha

2 tháng 10 2018

\(\left(5\cdot\left(x^2-3x+1\right)+x\cdot\left(1-5x\right)\right)-\left(x-2\right)=0\)

\(7-15x=0\)

\(-15x=-7\)

\(x=\frac{7}{15}=0.467\)

\(b,\)câu b dài quá nên mik lười, vậy mik ghi kết quả thôi nhé

\(x=\frac{2}{19}=0.105\)

\(c,\)câu c cũng vậy mik ghi kết quả thôi nhé bn

\(x=-\frac{6}{11}=-0.545\)

2 tháng 10 2018

Bực olm quá! Không cho người ta giải gì hết,cứ giải cần hết bài thì bị bắt tải lại. Nãy giờ hơn 15 lần rồi! Lần nãy nữa không giải nữa đâu nhé olm!!!!! Bực vl!Admin fix nhanh cho em cái! Mấy lần rồi bực quá nên giờ không biết giải còn đúng hay không :v

\(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^2+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x+4\right)\left(x-4\right)+3x^2\)

\(\Leftrightarrow\left(x^2-5^2\right)-\left(x^2+2.3x+3^2\right)+3\left(x^2-2.2x+2^2\right)=\left(x^2+2x+1\right)-\left(x^2-4^2\right)+3x^2\)

\(\Leftrightarrow x^2-25-x^2-6x-9+3x^2-12x+4=x^2+2x+1-x^2+16+3x^2\)

\(\Leftrightarrow\left(x^2-x^2+3x^2\right)-\left(25+9-4\right)-\left(6x+12x\right)=\left(x^2-x^2+3x^2\right)+2x+\left(1+16\right)\)

\(\Leftrightarrow3x^2-30-18x=3x^2+2x+17\)

\(\Leftrightarrow3x^2-3x^2-18x-2x=30+17\)

\(\Leftrightarrow-20x=47\Leftrightarrow x=\frac{-47}{20}\)

2 tháng 10 2018

Bạn kéo xuống xem thử nhé! Nó đang chờ duyệt,mình cũng không biết đúng hay sai vì olm ban nãy làm mình bực quá!

2 tháng 10 2018

a) \(x^6+1=x^6-\left(-1\right)=\left(x^3\right)^2-\left(-1^3\right)^2=\left(x^3\right)^2-\left(-1\right)\)

\(=\left(x^3-\left(-1\right)\right)\left(x^3+\left(-1\right)\right)=\left(x^3+1\right)\left(x^3-1\right)\)

b) \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

c) \(x^9+1=\left(x^3\right)^3+\left(-1\right)^3\)

\(=\left(x^3+1\right)\left(\left(x^3\right)^2-x^3.1+1^2\right)=\left(x^3+1\right)\left(x^6-x^3+1\right)\)

2 tháng 10 2018

a)  \(x^6+1=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)

\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

b)  \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)

c) \(x^9+1=\left(x^9-x^6+x^3\right)+\left(x^6-x^3+1\right)\)

\(=x^3\left(x^6-x^3+1\right)+\left(x^6-x^3+1\right)\)

\(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^6-x^3+1\right)\)

4 tháng 10 2018

Chả biết đúng hay sai :v làm thử 

\(a)\) Với \(\hept{\begin{cases}x+1\ge0\\x\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge0\\x\ge1\end{cases}\Leftrightarrow}x\ge1}\) ta có : 

\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)

\(\Leftrightarrow\)\(\left(x+1+x-1\right)^2-2\left(x+1\right)\left(x-1\right)+x^2=2\)

\(\Leftrightarrow\)\(4x^2-2x^2+2+x^2=2\)

\(\Leftrightarrow\)\(3x^2=0\)

\(\Leftrightarrow\)\(x^2=0\)

\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn ) 

Với \(\hept{\begin{cases}x+1< 0\\x< 0\\x-1< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x< 0\\x< 1\end{cases}\Leftrightarrow}x< -1}\) ta có : 

\(\left[-\left(x+1\right)\right]^2+\left(-x\right)^2+\left[-\left(x-1\right)\right]^2=2\)

\(\Leftrightarrow\)\(\left(x+1\right)^2+x^2+\left(x-1\right)^2=2\)

Đến đây giải giống như trên nha bạn 

\(\Leftrightarrow\)\(x=0\) ( không thỏa mãn ) 

Vậy không có giá trị x thỏa mãn đề bài 

Chúc bạn học tốt ~ 

19 tháng 9 2018

a ) A = 4x2 + 4x + 11

         = 4x2 + 4x + 1 + 10

          = ( 2x + 1 )2 + 10

Nhận xét : ( 2x + 1 )2 > 0 với mọi x thuộc R

       => ( 2x + 1 )2 + 10 > 10

       => A > 10

=> Giá trị nhỏ nhất của A là 10

Dấu = xảy ra khi :  ( 2x + 1 )2 = 0

                             => 2x + 1 = 0

                              => x = \(-\frac{1}{2}\)

Vậy giá trị nhỏ nhất của A là 10 khi x = \(-\frac{1}{2}\)

b ) B = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )

        = ( x - 1 ) ( x + 6 ) ( x + 2 ) ( x  + 3 )

        = ( x2 + 5x - 6 ) ( x2 + 5x + 6 )

Đặt t = x2 + 5x 

=> B = ( t - 6 ) ( t + 6 )

         = t2 - 36

Nhận xét : 

 t2 > 0 với mọi t thuộc R

=> t2 - 36 > - 36

=> B > - 36

=> Giá trị nhỏ nhất của B là - 36

Dấu = xảy ra khi : t2 = 0

                        => t = 0

                  mà t = x2 + 5x

                         => x2 + 5x = 0

                          => x ( x + 5 ) = 0

                        => \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)

                        => \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy giá trị nhỏ nhất của B là - 36 khi \(x\in\left\{0;-5\right\}\)

c )  C = x2 - 2x + y2 - 4y + 7

            = ( x2 - 2x + 1 ) +  ( y2 - 4y + 4 )  + 2

            = ( x - 1 )2 + ( y - 2 )2 + 2

Nhận xét : 

( x - 1 )2 > 0 với mọi x thuộc R

( y - 2 )2 > 0 với mọi y thuộc R

=> ( x - 1 )2 + ( y - 2 )2 > 0

=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2

=> C > 2

=> Giá trị nhỏ nhất của C là 2

Dấu = xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

                           => \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)

                            => \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy giá trị nhỏ nhất của C là 2 khi x = 1 và y = 2

6 tháng 10 2018

a) \(x^5+x+1=\left(x^5+x+1\right)=x\left(x^4+1+\frac{1}{x}\right)\)

b) và c) Tương tự nha

6 tháng 10 2018

Chả biết đúng hay sai :v tại dùng máy tính tính ra kết quả rồi phân tích ngược lại

a) \(x^5+x+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=x^3\left(x^2+x+1\right)+x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x-1\right)\)

b)\(x^4+2002x^2+2001x+2002=x^4+x^3+1-x^3+x^2+x+2002x^2+2002x+1\)

 \(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)

\(=\left(x^2-x+2002\right)\left(x^2+x+1\right)\)

c)Tương tự câu a),ta phân tích được:

  \(x^{11}+x^7+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)