K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
16 tháng 6 2021

Đặt \(x=a,1+y=b\).

Ta có: 

\(a^3+b^3=2ab\)

\(\Leftrightarrow a^4+ab^3=2a^2b\)

\(\Leftrightarrow\left(a^2-b\right)^2-b^2=-ab^3\)

\(\Leftrightarrow\left(a^2-b\right)^2=b^2\left(1-ab\right)\)

\(\Leftrightarrow1-ab=\left(\frac{a^2-b}{b}\right)^2\)

Ta có đpcm. 

DD
16 tháng 6 2021

Đặt \(x=a,1+y=b\).

Ta có: 

\(a^3+b^3=2ab\)

\(\Leftrightarrow a^4+ab^3=2a^2b\)

\(\Leftrightarrow\left(a^2-b\right)^2-b^2=-ab^3\)

\(\Leftrightarrow\left(a^2-b\right)^2=b^2\left(1-ab\right)\)

\(\Leftrightarrow1-ab=\left(\frac{a^2-b}{b}\right)^2\)

Ta có đpcm. 

17 tháng 6 2021

bạn ơi sao mình thay x=1, y=\(\frac{-3+\sqrt{5}}{2}\) ( thỏa mãn đề bài) thì \(\sqrt{1-xy-x}\)không là số hữu tỉ

DD
16 tháng 6 2021

\(x^3-y^3=2xy\)

\(\Leftrightarrow x^4-xy^3-2x^2y=0\)

\(\Leftrightarrow\left(x^2-y\right)^2-y^2-xy^3=0\)

\(\Leftrightarrow\left(x^2-y\right)^2=y^2\left(1+xy\right)\)

\(\Leftrightarrow1+xy=\left(\frac{x^2-y}{y}\right)^2\)

Ta có đpcm. 

28 tháng 9 2016

xét 1-1/xy:
=(xy-1)/xy
nhân 4x^3y^3 vào bt:
(4x^4y^4-4x^3y^3)/4x^4y^4
thay 4x^4y^4=(x^3+y^3)^2:
=[(x^3+y^3)^2-4x^3y^3]/(x^3+y^3)^2
=(x^6+y^6-2x^3y^3)/(x^3+y^3)^2
=(x^3-y^3)^2/(x^3+y^3)^2
=>căn(1-1/xy)=lx^3-y^3l / lx^3+y^3l là số hữu tỉ


 

28 tháng 9 2016

Cô phải đọc rất kĩ mới hiểu bài của Minh. Lần sau em chú ý dùng công thức có trong phần \(f\left(x\right)\)để bài làm được trực quan hơn.
Cảm ơn em đã trình bày bài giải !

15 tháng 10 2017

Bạn vào trang này nha ( https://olm.vn/hoi-dap/question/898864.html ). Mình giải rồi đấy. Nhớ k mình nha

28 tháng 10 2018

\(x^3+y^3=2x^2y^2\)

<=>   \(\left(x^3+y^3\right)^2=4x^4y^4\)

<=>  \(\left(x^3-y^3\right)^2=4x^4y^4-4x^3y^3\)

<=>  \(\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)

<=>  \(1-\frac{1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\)

<=>  \(\sqrt{1-\frac{1}{xy}}=\frac{\left|x^3-y^3\right|}{2x^2y^2}\) là số hữu tỉ

15 tháng 10 2017

Ta có : \(x^3+y^3=2x^2y^2\Rightarrow\left(x^3+y^3\right)^2=4x^4y^4\)

            \(x^6+y^6+2x^3y^3=4x^4y^4\Rightarrow x^6+y^6-2x^3y^3=4x^4y^4-4x^3y^3\)

            \(\left(x^3-y^3\right)^2=4x^3y^3\left(xy-1\right)\Rightarrow xy-1=\frac{\left(x^3-y^3\right)^2}{4x^3y^3}\)

            \(\frac{xy-1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\) (chia cả 2 vế cho xy)\(\Rightarrow1-\frac{1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\)

              \(\Rightarrow\sqrt{1-\frac{1}{xy}}=\frac{x^3-y^3}{2x^2y^2}\)

15 tháng 10 2017

nhớ k mình nha

AH
Akai Haruma
Giáo viên
30 tháng 8 2018

Lời giải:

Ta có:

\(x^3+y^3=2x^2y^2\)

\(\Rightarrow \frac{1}{x^3}+\frac{1}{y^3}=\frac{2}{xy}\) (chia 2 vế cho $x^3y^3$)

\(\Rightarrow (\frac{1}{x^3}+\frac{1}{y^3})^2=\frac{4}{x^2y^2}\)

\(\Leftrightarrow \frac{1}{x^6}+\frac{1}{y^6}+\frac{2}{x^3y^3}=\frac{4}{x^2y^2}\)

\(\Leftrightarrow \frac{1}{x^6}+\frac{1}{y^6}-\frac{2}{x^3y^3}=\frac{4}{x^2y^2}-\frac{4}{x^3y^3}\)

\(\Leftrightarrow (\frac{1}{x^3}-\frac{1}{y^3})^2=\frac{4(xy-1)}{x^3y^3}\)

\(\Rightarrow \frac{xy-1}{xy}=\frac{1}{4}x^2y^2(\frac{1}{x^3}-\frac{1}{y^3})^2\)

\(\Rightarrow A=\frac{1}{2}|xy(\frac{1}{x^3}-\frac{1}{y^3})|\in\mathbb{Q}\) do \(x,y\in\mathbb{Q}\)

Ta có đpcm.