Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{xy}\le\frac{x+y}{2}=\frac{2a}{2}=a\Rightarrow xy\le a^2\)
Ta có : \(A=\frac{x+y}{xy}\ge\frac{2a}{a^2}=\frac{a}{2}\)
Dấu "=" xảy ra khi x = y = a
vậy ....
Bài: Cho x,y >0, x+y>=4. Tìm giá trị nhỏ nhất của biểu thức: A= 3x + 4y +\(\frac{5}{x}+\frac{9}{y}\)
\(A=3x+4y+\frac{5}{x}+\frac{9}{y}=\frac{5}{4}x+\frac{5}{x}+\frac{9}{4}y+\frac{9}{y}+\frac{7}{4}x+\frac{7}{4}y\)
\(\ge2\sqrt{\frac{5}{4}x.\frac{5}{x}}+2\sqrt{\frac{9}{4}y.\frac{9}{y}}+\frac{7}{4}.4\)
\(=5+9+7=21\)
Dấu \(=\)khi \(x=y=2\).
\(S=x+y+\frac{3}{4x}+\frac{3}{4y}\)
\(=x+y+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\ge x+y+\frac{3}{x+y}\)
\(=\left(x+y+\frac{16}{9\left(x+y\right)}\right)+\frac{11}{9\left(x+y\right)}\)
\(\ge\frac{4}{3}+\frac{11}{9\cdot\frac{4}{3}}=\frac{43}{12}\)
Tại \(x=y=\frac{2}{3}\)
AP DUNG BDT CAUCHY-SCHWAR : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)(DAU "=" XAY RA KHI \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\))
...Cauchy-Schwarz:
\(Q\ge\frac{\left(1+2+3\right)^2}{x+y+z}=\frac{36}{1}=36\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x}=\frac{2}{y}=\frac{3}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=y\\3y=2z\\z=3x\end{cases}}\)
Giải tiếp t cái dấu = :v
\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)
\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)
\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)
Vậy GTNN của Q là 1 <=> x = y = 2
Or
\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*
Do đó \(Q\ge1\)
Đẳng thức xảy ra khi x = y = 2
a có:\(\frac{\left(x-y\right)^2}{xy}\ge0\forall x,y\)
\(\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)
Áp dụng BĐT Cô-si vào các số dương \(\frac{x^2}{y^2},\frac{y^2}{x^2}\)ta có:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}.\frac{y^2}{x^2}}=2\left(2\right)\)
Áp dụng BĐT \(\left(1\right),\left(2\right)\)ta được:
\(A=3\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-8\left(\frac{x}{y}+\frac{y}{x}\right)\ge3.2-8.2=-10\)
Dấu '=' xảy ra khi \(x=y\)
Vậy \(A_{min}=-10\)khi \(x=y\)
Áp dụng BĐT Minicopski ta có:
\(T=\sqrt{x^4+\frac{1}{x^4}}+\sqrt{y^2+\frac{1}{y^2}}\ge\sqrt{\left(x^2+y\right)^2+\left(\frac{1}{x^2}+\frac{1}{y}\right)^2}\)
\(\ge\sqrt{1^2+\left(\frac{4}{x^2+y}\right)^2}=\sqrt{1+\left(\frac{4}{1}\right)^2}=\sqrt{17}\)
Nên GTNN của T là \(\sqrt{17}\) khi \(\hept{\begin{cases}x=\sqrt{\frac{1}{2}}\\y=\frac{1}{2}\end{cases}}\)
Tham khảo bài 8 trong link: Câu hỏi của Nguyễn Linh Chi - Toán lớp - Học toán với OnlineMath
Tham khảo link này : https://olm.vn/hoi-dap/detail/223163065606.html
\(A=x+\frac{1}{y}+\frac{4}{x-y}\)
\(A=x-y+\frac{4}{x-y}+y+\frac{1}{y}\)
Do \(x>y\Leftrightarrow x-y>0\)nên ta có thể áp dụng bất đẳng thức Cô-si cho 2 số dương \(x-y\)và \(\frac{4}{x-y}\)
Ta được \(x-y+\frac{4}{x-y}\ge2\sqrt{\left(x-y\right).\frac{4}{x-y}}=4\)
Vì \(y>0\)nên ta áp dụng bất đẳng thức Cô-si cho 2 số dương \(y\)và \(\frac{1}{y}\), ta có:
\(y+\frac{1}{y}\ge2\sqrt{y.\frac{1}{y}}=2\)
Vậy \(A=x-y+\frac{4}{x-y}+y+\frac{1}{y}\ge4+2=6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=\frac{4}{x-y}\\y=\frac{1}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^2=4\\y^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=2\left(x-y>0\right)\\y=1\left(y>0\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Vậy GTNN của A là 6 khi \(\hept{\begin{cases}x=3\\y=1\end{cases}}\)