Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)
\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)
\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)
\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)
Vậy GTNN của Q là 1 <=> x = y = 2
Or
\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*
Do đó \(Q\ge1\)
Đẳng thức xảy ra khi x = y = 2
Làm tiếp ạ
\(\Rightarrow P\ge\frac{289}{16}\)
Dấu"="Xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Vậy MIN P=\(\frac{289}{16}\)\(\Leftrightarrow x=y=\frac{1}{2}\)
Em chả có cách gì ngoài cô si mù mịt :v
\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
\(=\left(x^2+\frac{1}{16y^2}+\frac{1}{16y^2}+.....+\frac{1}{16y^2}\right)\left(y^2+\frac{1}{16x^2}+\frac{1}{16x^2}+.....+\frac{1}{16x^2}\right)\)
\(\ge17\sqrt[17]{\frac{x^2}{16^{16}\cdot y^{32}}}\cdot17\sqrt[17]{\frac{y^2}{16^{16}\cdot x^{32}}}\)
\(=17^2\sqrt[17]{\frac{x^2y^2}{16^{32}\cdot x^{32}\cdot y^{32}}}\)
\(=17^2\sqrt[17]{\frac{1}{16^{32}\cdot\left(xy\right)^{30}}}\)
\(\ge17^2\sqrt[17]{\frac{1}{16^{32}\left(\frac{x+y}{2}\right)^{60}}}=\frac{289}{16}\)
Dấu "=" xảy ra tại x=y=1/2
Bằng bước biến đổi \(P=\frac{\left(x+y\right)^2+xy}{\sqrt{xy}.\left(x+y\right)}\)ta có cách giải sau
Áp dụng Bất đẳng thức AM-GM,ta có: \(P=\frac{\left(x+y\right)^2+xy}{\sqrt{xy}.\left(x+y\right)}\ge\frac{2\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(x+y\right)}=2\)
Vậy giá trị nhỏ nhất của P là 2 đạt được khi \(\left(x+y\right)^2=xy\Leftrightarrow x^2+xy+y^2=0\)
Cơ mà nếu vậy thì P không có giá trị nhỏ nhất à, hay là em làm sai
Đổi tên biểu thức thành M cho nó đỡ nhầm lẫn với cách phần đặt biến phụ nha!
Biểu thức đối xứng 2 biến x, y là em nghĩ đến cách đặt \(S=x+y;P=xy\Rightarrow S^2\ge4P\).(đẳng thức xảy ra khi x = y)
Có: \(M=\frac{S^2+P}{S\sqrt{P}}=\frac{S}{\sqrt{P}}+\frac{\sqrt{P}}{S}\). Đặt \(t=\frac{S}{\sqrt{P}}=\sqrt{\frac{S^2}{P}}\ge\sqrt{\frac{4P}{P}}=2\). Quy về tìm min biểu thức:
\(M=t+\frac{1}{t}\left(t\ge2\right)\). Đến đây có 2 cách:
+) Cách 1: \(t+\frac{1}{t}=\frac{t}{4}+\frac{1}{t}+\frac{3t}{4}\ge2\sqrt{\frac{t}{4}.\frac{1}{t}}+\frac{3.2}{4}=\frac{5}{2}\)
Đẳng thức xảy ra khi ... (anh tự giải nhá:3)
+) Cách 2: \(t+\frac{1}{t}=t+\frac{4}{t}-\frac{3}{t}\ge2\sqrt{t.\frac{4}{t}}-\frac{3}{2}=\frac{5}{2}\)
Vậy...
\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\cdot\frac{x-1}{x}\cdot\frac{y-1}{y}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\cdot\frac{\left(-x\right)\left(-y\right)}{xy}\)
\(=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=1+\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1+\frac{x+y}{xy}+\frac{1}{xy}\)
\(=1+\frac{2}{xy}\ge1+\frac{2}{\frac{\left(x+y\right)^2}{4}}=1+\frac{2}{\frac{1}{4}}=1+8=9\)
Vậy GTNN của B = 9 khi \(x=y=\frac{1}{2}\)
Đặt Q = \(\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}\) = \(\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)
Q = \(\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}\) = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)
Q = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}\) = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)
Áp dụng bất đẳng thức AM-GM ta có:
\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)
\(x^2+y^2\ge2\sqrt{x^2y^2=}2xy\)
\(\Leftrightarrow\)Q = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}\)
\(\Leftrightarrow\)Q = \(\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}\)= \(1\)
Đẳng thức xảy ra : \(\Leftrightarrow\hept{\begin{cases}x,y>0\\x=y\Rightarrow\\xy=4\end{cases}x=y=2}\)
Vậy giá trị nhỏ nhất của Q là 1 \(\Leftrightarrow x=y=2\)
CMR: \(\left(2+\sqrt{3}\right)^{2021}+\left(2-\sqrt{3}\right)^{2021}⋮4\)
đặt \(a=2+\sqrt{3}\); \(b=2-\sqrt{3}\)
suy ra: \(a+b=2+\sqrt{3}+2-\sqrt{3}=4\)
và : \(ab=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\)
Ta có: \(a^{2021}+b^{2021}=\left(a+b\right)\left(a^{2020}-a^{2019}b+a^{2018}b^2-...+a^{1010}b^{1010}-...-ab^{2019}+b^{2020}\right)\)
\(=\left(a+b\right)\left(a^{2020}-a^{2018}ab+a^{2016}a^2b^2-...+a^{1010}b^{1010}-...-abb^{2018}+b^{2020}\right)\)
Vì \(a+b=4\);\(ab=1\)nên:
\(a^{2021}+b^{2021}=4\left(a^{2020}-a^{2018}+a^{2016}-...+1-...-b^{2018}+b^{2020}\right)\)
\(=4\left(a^{2020}+b^{2020}-\left(a^{2018}+b^{2018}\right)+a^{2016}+b^{2016}-...+1\right)\)
\(=4\left(\left(a+b\right)^{2020}-2\left(ab\right)^{1010}-\left(a+b\right)^{2018}+2\left(ab\right)^{1009}+\left(a+b\right)^{2016}-2\left(ab\right)^{1008}-...+1\right)\)\(=4\left(4^{2020}-2-4^{2018}+2+4^{2016}-2-...+1\right)\)
\(=4S\)(Với \(S\inℕ^∗\))
suy ra \(a^{2021}+b^{2021}=4S⋮4\)
Vậy \(\left(2+\sqrt{3}\right)^{2021}+\left(2-\sqrt{3}\right)^{2021}⋮4\left(đpcm\right)\)
Dự đoán dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) ta tính được \(A=\frac{1}{4}\)
Ta sẽ chứng minh nó là GTNN của A
Thật vậy áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=Σ\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\)
Do đó ta cần phải chứng minh \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{x+y+z}{4}\)
\(\Leftrightarrow4\left(x^2+y^2+z^2\right)^2\ge\left(x+y+z\right)Σ\left(2x^3+x^2y+x^2z\right)\)
\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+6x^2y^2-2x^2yz\right)\ge0\)
\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+4x^2y^2\right)+Σ\left(2x^2y^2-2x^2yz\right)\ge0\)
\(\LeftrightarrowΣ\left(x^4-3x^3y+4x^2y^2-3xy^3+y^4\right)+Σ\left(x^2z^2-2z^2xy+y^2z^2\right)\ge0\)
\(\LeftrightarrowΣ\left(x-y\right)^2\left(x^2-xy+y^2\right)+Σz^2\left(x-y\right)^2\ge0\) (đúng)
Vậy \(x=y=z=\frac{1}{3}\) thì \(A_{Min}=\frac{1}{4}\)
\(A=\frac{4\left(x+y+\sqrt{xy}\right)}{x+y+2\sqrt{xy}}=\frac{3\left(x+y+2\sqrt{xy}\right)+\left(x+y-2\sqrt{xy}\right)}{\left(x+y+2\sqrt{xy}\right)}=\frac{3\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)^2}=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)^2}+3\ge3\)
=> \(A\ge3\)
Vậy Min A = 3 khi x=y
a có:\(\frac{\left(x-y\right)^2}{xy}\ge0\forall x,y\)
\(\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(1\right)\)
Áp dụng BĐT Cô-si vào các số dương \(\frac{x^2}{y^2},\frac{y^2}{x^2}\)ta có:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\sqrt{\frac{x^2}{y^2}.\frac{y^2}{x^2}}=2\left(2\right)\)
Áp dụng BĐT \(\left(1\right),\left(2\right)\)ta được:
\(A=3\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-8\left(\frac{x}{y}+\frac{y}{x}\right)\ge3.2-8.2=-10\)
Dấu '=' xảy ra khi \(x=y\)
Vậy \(A_{min}=-10\)khi \(x=y\)